

Mini SQL Version 3Mini SQL Version 3Mini SQL Version 3Mini SQL Version 3
Users Guide and Reference

Last Updated for mSQL 3.3 release (Jan 2003)

www.Hughes.com.auwww.Hughes.com.auwww.Hughes.com.auwww.Hughes.com.au

Although best efforts have been made to ensure the completeness and accuracy of the material presented in this
document, Hughes Technologies Pty Ltd does not warrant the correctness of the information provided herein.

Reproduction or translation of any part of this work beyond that permitted by section 107 or 108 of the 1976 United
States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further
information should be addressed to Hughes Technologies Pty Ltd at the contact address provided in the preface of this
document.

Copyright © 2002,2003 Hughes Technologies Pty Ltd. All rights reserved.

This document is designed to be printed on a duplex (double sided) device.

PrefacePrefacePrefacePreface
Intended AudienceIntended AudienceIntended AudienceIntended Audience

This document has been prepared as a manual for the use of the Mini SQL database system. It is not a general
purpose tutorial or text for learning every aspect of the Structured Query Languages (SQL). The reader is
expected to have at least an introductory knowledge of SQL and the concepts of a relational database system.

The mSQL API section of this document covers the programming interface provided by mSQL. It is described
in the native language of the API library, C. It is assumed that the reader has a good understanding of
programming in the C language and that s/he is familiar with the basic functionality provided by the standard C
library.

The Lite section of the manual documents the Lite programming language. The syntax and semantics of the Lite
language are similar to those of the C language. A working knowledge of C will aid the reader in understanding
the Lite language.

Integration of mSQL and the World Wide Web is covered in the W3-mSQL section. It is assumed that the
reader is familiar with the WWW, HTML, CGI scripts and the operation of a web server (http daemon).

Document ConventionsDocument ConventionsDocument ConventionsDocument Conventions
This manual has been designed to be printed on US Letter paper. While many parts of the world utilise the A4
paper size (Australia included), it is not possible to print A4 formatted documents on US Letter paper without
loss of information. However, printing of US Letter formatted documents on A4 will result in a correct
representation of the document with somewhat larger margins than normal.

Throughout this manual, parts of the text have been flagged with the symbol that appears in the margin opposite
this paragraph. Such pieces of text are viewed as being important. The reader should ensure that paragraphs
marked as important are read even if the entire manual section is only being skimmed. Important sections will
include information such as areas in which mSQL may deviate from other SQL implementations, or tips on
improving the performance of your database applications.

Contact InformationContact InformationContact InformationContact Information
Further information about mSQL and its related software can be found on the Hughes Technologies World Wide
Web site. The web site includes the latest version of mSQL, documentation, example software, references to
customer sites, and much more. Our web site can be found at

http://www.Hughes.com.au

Product support and information are available over the Internet via electronic mail. For product support, please
contact support@Hughes.com.au and for product information please use info@Hughes.com.au. More traditional ways to
contact us are via postal mail or facsimile using the information below.

Postal Mail PO Box 432

Main Beach
Queensland 4217
Australia

Table of ContentsTable of ContentsTable of ContentsTable of Contents
Introduction.. 1

Mini SQL 3... 1
Installing mSQL 3 .. 2

Getting Ready to Compile .. 2
Compilation and Installation ... 3

Configuring mSQL 3.. 4
Structure of the config file... 4
Elements of the General section .. 4
Elements of the System section ... 5
Example configuration file .. 6

Express Setup.. 6
The mSQL Query Language ... 7

The Create Clause... 7
The Drop Clause.. 9
The Insert Clause... 9
The Select Clause.. 9
The Delete Clause ... 15
The Update Clause .. 16

C Programming API... 17
Query Related Functions.. 17
Schema Related Functions .. 21
Date & Time Related Functions.. 22
Miscellaneous Functions.. 24

System Variables... 25
_rowid .. 25
_timestamp .. 25
_seq... 26
_sysdate .. 26
_systime .. 26
_user.. 26

Standard Programs and Utilities.. 27
The monitor – msql .. 27
Schema viewer – relshow .. 28
Admin program - msqladmin .. 28
Data dumper - msqldump... 29
Data exporter - msqlexport... 30
Data importer - msqlimport... 31

Appendix A - New Features in mSQL 3... 32
Single Process and Multi-Process Servers... 32
Enhanced Indexing .. 32
Data Types .. 32
Functions ... 32
Regular Expressions.. 32
Tunable Memory Use... 33
Higher Performance... 33

Appendix B - mSQL Error Messages... 34
API Library Error Messages ... 34
Server Error Messages .. 35

Page 1

IntroductionIntroductionIntroductionIntroduction
Mini SQL, or mSQL as is it often called, is a light weight relational database management system. It has been
designed to provide rapid access to data sets with as little system overhead as possible. The system itself is
comprised of a database server and various tools that allow a user or a client application to communicate with the
server.

Although mSQL uses the Structured Query Language (SQL) as its query language, it does not provide a
complete implementation of the ANSI standard SQL. Several features of SQL that are found in more recent
versions of the ANSI standard and in more sophisticated database systems are not provided by mSQL. The
incorporation of such features would be in conflict with the basic concept of mSQL (i.e. a Mini database system)
and would also increase the load and system requirements needed to run the software.

The philosophy of mSQL has been to provide a database management system capable of rapidly handling simple
tasks. It has not been developed for use in critical financial environments (banking applications for example).
The software is capable of performing the supported operations with exceptional speed whilst utilising very few
system resources. Some database systems require high-end hardware platforms and vast quantities of memory
before they can provide rapid access to stored data. mSQL has been designed to provide exceptional data access
performance on “small hardware” platforms (such as PC class hardware). Because of these characteristics,
mSQL is well suited to the vast majority of data management tasks.

Although the mSQL software distribution is made available over the Internet (and other mechanisms) it is not
public domain software or FreeWare. mSQL is a commercial, supported software package developed by Hughes
Technologies Pty Ltd in Australia. Use of this software in any commercial environment requires the purchase of
a commercial use license from Hughes Technologies. Free licenses are provided to organisations such as
Universities, schools and registered charities in an attempt to maintain the ethos of the original Internet. For
more information on purchasing a license or determining whether you qualify for a free license, please see the
Hughes Technologies World Wide Web site at http://Hughes.com.au/.

Development of mSQL and its associated tools is an ongoing project. Current releases of the mSQL package
and applications that use mSQL are always available from the Hughes Technologies web site. If you require
product support, a new version of the software, or some ideas about using mSQL then please visit our web site.

Mini SQL Mini SQL Mini SQL Mini SQL 3333
Mini SQL 3 is the third generation of the mSQL database system. The development of this generation of the
product has been aimed at widening the potential application of the software. Depending on one’s point of view,
mSQL 2.x could have been viewed as either too small (for multi-million entry databases requiring simultaneous
query execution) or too large (for embedded systems). This release provides configurable features that will
allow it to be used in large enterprise environments, embedded systems, and everything else in between.

To cater for the widest range of applications, two version of the database server are provided: a single process
server called msql3d, and a multi-process server called msql3_broker. msql3d is similar in concept to the server
provided with the mSQL 2.x release. The new msql3_broker backend (or broker based server) allows a group of
processes to be configured to simultaneously handle queries coming from multiple clients. By tuning the size of
the process pool, the number of queries that can be processed simultaneously can be set.

New features common to both the servers include extensions to the range of SQL statements supported, more
efficient CPU and memory utilisation, an enhanced query optimiser allowing much greater use of indicies, and a
more reliable module based structure to the underlying server code.

Further information on the new features in mSQL 3 can be found in Appendix A.

Page 2

Installing mSQL Installing mSQL Installing mSQL Installing mSQL 3333
For the eager reader, an overview of the compilation and installation process can be found below in the Express
Setup section

Mini SQL is generally distributed in source code form to enable the widest possible use of the software. It is not
feasible for binary distributions to be generated for every UNIX platform for each release of mSQL. Instead, the
software and the installation tools have been made as portable as possible. In general, the software will
automatically configure itself to the capabilities of the operating system on which it is being compiled. Typing
four commands can complete the process of compiling and installing mSQL on most UNIX platforms. Only
under extreme situations will the software not compile “out of the box”. Hints for getting the software compiled
on troublesome operating systems is available in the Installation Troubleshooting section below.

The software is distributed as a gziped (i.e. compressed) tar file. Tar is a standard UNIX facility for combining
many files and directories into a single archive file. The tar utility should be available on any modern UNIX
system. If your system does not provide the tar utility then a freely available version of tar has been produced by
the Free Software Foundation (the GNU project). The GNU version of tar can be found on any GNU archive
site. Similarly, the gzip compression tools are produced by the Free Software Foundation. If your system does
not provide the gzip or gunzip utility then you will need to obtain these from your nearest GNU archive site.

The table below shows a selection of commonly used GNU archive sites. To access these site use anonymous
FTP (or the URL provided). A complete list of GNU software mirror sites can be found at
http://www.gnu.org/order/ftp.html.

Country Hostname Directory URL

Australia mirror.aarnet.edu.au /pub/gnu ftp://mirror.aarnet.edu.au/pub/gnu

U.S.A prep.mit.edu /pub/gnu ftp://prep.mit.edu/pub/gnu

U.S.A ftp.uu.net /systems/gnu ftp://ftp.uu.net/systems/gnu

U.S.A gatekeeper.dec.com /pub/GNU ftp://gatekeeper.dec.com/pub/GNU

United Kingdom ftp.mcc.ac.uk /pub/gnu ftp://ftp.mcc.ac.uk/pub/gnu

Getting Ready to CompileGetting Ready to CompileGetting Ready to CompileGetting Ready to Compile
Before the software can be compiled, the contents of the archive file must be extracted. This involves
uncompressing the archive file with gunzip and then using the tar utility to extract the file. If, for example, the
file containing the mSQL distribution is called msql-3.X.tar.gz then the following commands would extract the
files (two methods are outlined)

gunzip msql-3.X.tar.gz
tar –xvf msq-3.X.tar

Or
gzcat msql-3.X.tar.gz | tar –xvf -

This process would create a new directory called msql-3.X in the current directory. Within that directory you
will find the entire mSQL distribution. Along with various other files and directories there will be directories
containing the source code (src directory) and the documentation (the doc directory). Although it is tempting to
just enter the src directory and type “make” it is not the correct way to compile mSQL and doing so will cause
problems.

Page 3

The configuration process is totally automatic and will determine what system calls, library functions, and
header files your operating system provides. To configure the compilation process simply type

./setup

While the setup utility is executing you will see various pieces of information about your operating system being
displayed as it is determined. This output is informative only. The results are automatically placed in files used
by mSQL.

Once the automatic configuration is complete you may either compile the software using the default
configuration settings or change the configuration settings from their default value. There are two configuration
items located in the src/site.mm file in the targets directory that you may consider modifying. The configuration
utility will try to determine the best C compiler to use on your system. If you have multiple C compilers (a
system compiler and gcc for example) you may wish to modify the CC entry in src/site.mm.

The only other option in src/site.mm that may require modification is the INST_DIR entry. This entry defines
the default installation directory. This setting is not only used during installation of the software but also as the
directory containing the run-time configuration file. If you intend running mSQL from a directory other than the
default /usr/local/msql3 directory then modify the INST_DIR entry in src/site.mm to reflect your installation
directory.

Compilation and InstallationCompilation and InstallationCompilation and InstallationCompilation and Installation
Once the setup utility has completed you may compile the software by typing

make all

The compilation process will traverse all the directories of the mSQL distribution and compile the C source code
in those directories. Status information is displayed to you as the compilation process proceeds. If the
compilation process stops with an error at any stage then please see the Installation Troubleshooting section
below. If the compilation has completed properly you will see a message on your screen informing you that you
are ready to install mSQL.

Installation of mSQL can also be achieved using a single command, although you may need to have special
permissions on your UNIX system (usually root access). By default, mSQL will be installed in a directory called
/usr/local/msql3 on your system. If /usr/local is root owned on your system (as it is on most systems) then you
will either need root access or you will have to get your system administrator to complete the installation for
you. If you are using a non-default installation directory then ensure that you have the required permissions to
create the directory you specified. To complete the installation simply type

make install

Page 4

Configuring Configuring Configuring Configuring mSQL 3mSQL 3mSQL 3mSQL 3
mSQL 3 utilises an external run-time configuration file for definition of all system configuration values. The file
is called msql.conf and is located in the installation directory (usually /usr/local/msql3). An application can
choose to use a different configuration file by calling the new msqlLoadConfigFile() API function. All standard
mSQL applications and utilities provide a command line flag, -f ConfFile , that allows you to specify a non-
standard configuration file. When an application first calls the mSQL API library, a check is made to see if a
configuration file has been loaded via a call to the msqlLoadConfigFile() function. If no such call has been
made, the API library loads the default config file. Any values that are specified in that file will over-ride the
normal operating parameters used by mSQL. If no configuration file is found (or certain items are not set) then
the default values listed below will be used.

Structure of the config fileStructure of the config fileStructure of the config fileStructure of the config file
The configuration file is a plain text file organised into sections. The file can contain blank lines and comments.
A comment is a line that begins with the '#' character. Each section of the configuration file has a section header,
which is written as the section name enclosed in square brackets (for example [general]).

Configuration values within a section are presented using the config parameter name followed by an equals sign
and then the new value. There can only be one entry per line and if an entry is defined multiple times in the one
config file the last value defined will be used. If a parameter is not defined in the config file then an internal
default value will be used at run-time.

Elements of the General sectionElements of the General sectionElements of the General sectionElements of the General section
The following configuration parameters are available in the general section of the config file. Please note that %I
may be used in configuration entries to signify the mSQL installation directory (e.g. /usr/local/msql3).

Parameter Default Value Definition

Inst_Dir /usr/local/msql3 The full path to the installation directory. This is the directory in
which all the mSQL files are located (such as the program files, the
database files etc).

DB_Dir %I/msqldb The full path of the directory in which the server will store the
database files. %I/msqldb is expanded to /usr/local/msql3/msqldb
by default.

mSQL_User msql The user that the mSQL server should run as. If a user other than this
user starts the server (e.g. it is started as root from a boot script) it
will attempt to change UID so that it runs as the specified user.

Admin_User root The user that is allowed to perform privileged operations such as
server shutdown, creation of databases etc.

Pid_File %I/msql2.pid The full path of a file in which the PID of the running mSQL server
process will be stored.

TCP_Port 1114 The TCP port number on which the mSQL server will accept
client/server connections over a TCP/IP network. If this value is
modified it must be modified on the machine running the client
software also.

UNIX_Port %I/msql2.sock The full path name of the UNIX domain socket created by the mSQL
server for connections from client applications running on the same
machine.

Page 5

Elements of the System sectionElements of the System sectionElements of the System sectionElements of the System section
The following configuration parameters are available in the System section of the configuration file and
determine the values of various system level configuration items.

Parameter Default Value Definition

Msynch_Timer 30 Defines the interval in seconds at which the memory mapped data
regions maintained in the mSQL server process will be synched
with the on-disk images. Setting this value to 0 will disable forced
synchronisation of the data and rely on the kernel’s synch’ing of the
mmap regions.

Host_Lookup True Determines whether ip address to hostname lookups are required.
If set to true, connections by hosts that do not resolve to a hostname
will be rejected.

Read_Only False Forces the server to operate in read-only mode. Any attempts to
modify the database will be rejected (i.e. the only commands
accepted are select queries).

Remote_Access False Allow access to the database server from remote machines over a
TCP/IP network

Local_Access True Allow access to the database server from applications running on
the same physical machine as the server.

Query_Log False Generate a log file containing all queries received and processed by
the server.

Query_Log_File If Query_Log is set to True, this item contains the full path of the
file in which the log data will be stored. It is often defined as
%I/query.log

Update_Log False Generate a log file containing all queries received and processed by
the server that modify the database (INSERT, DELETE, UPDATE
etc). SELECT queries are not logged.

Update_Log_File If Update_Log is set to True, this item contains the full path of the
file in which the log data will be stored. It is often defined as
%I/update.log

Force_Munmap False Rather than relying on the operating system to synchronise memory
mapped files properly, the option will force the server to unmap and
remap the regions. If set to true, this will impose significant
performance penalties but will ensure data integrity on buggy
systems.

Num_Children 2 The number of backend process started by the multi-process
(broker based) server implementation

Table_Cache 8 The number of entries that can be held in the table cache. Each
entry consumes memory and file descriptor. On embedded
systems, this value can be set to a lower value to consume
resources. A minimum site of 2 is enforced as the server cannot
operate without at least 2 entries.

Sort_Max_Mem 1000 The max amount of memory that an ORDER BY or a DISTINCT
operation will consume.

Page 6

Example configuration fileExample configuration fileExample configuration fileExample configuration file
Below is a sample configuration file. This file just sets the parameters to their default values.

msql.conf - Configuration file for Mini SQL Version 3

This configuration sets all options to their default values.
Note : %I is expanded to the value of the Inst_Dir element is included in a value.

[general]
Inst_Dir = /usr/local/msql3
mSQL_User = daemon
Admin_User = root
Pid_File = %I/msql3.pid
TCP_Port = 1114
UNIX_Port = %I/msql3.sock

[system]
Msynch_Timer = 30
Host_Lookup = True
Read_Only = False
Num_Children = 3
Table_Cache = 8
Sort_Max_Mem = 1000
Force_Munmap = False
Query_Log = False
Update_Log = False
Local_Access = True
Remote_Access = False

Express SetupExpress SetupExpress SetupExpress Setup
Below is a rough outline of the process of compiling, installing and configuring mSQL. It is intended as a guide
for those who are familiar with installing software on a UNIX machine. If you are not familiar with any of the
steps mentioned below then please read the complete installation guide from the start of this manual section.

Step 1 Unpack the software distribution using gunzip and tar
gunzip msql-3.0-rel.tar.gz
tar –xvf msql-3.0-rel.tar

Or
gzcat msql-3.0-rel.tar.gz | tar –xvf –

Step 2 Configure the compilation process
./setup

Step 3 Check the default values of INST_DIR and CC in the src/site.mm file

Step 4 Compile the software

make all

Step 5 Install the software
make install

Step 6 Configure the software by editing the msql.conf file in the installation directory

Page 7

The mSQL Query LanguageThe mSQL Query LanguageThe mSQL Query LanguageThe mSQL Query Language
The mSQL language offers a significant subset of the features provided by ANSI SQL. It allows a program or
user to store, manipulate and retrieve data in table structures. It does not support some relational capabilities such
as views and nested queries. Although it does not support all the relational operations defined in the ANSI
specification, mSQL provides a significant subset of the ANSI SQL standard and is capable of supporting the
vast majority of applications.

The definitions and examples below depict mSQL key words in upper case, but no such restriction is placed on
the actual queries.

The Create ClauseThe Create ClauseThe Create ClauseThe Create Clause
The create clause as supported by mSQL 3 can be used to create tables, indices, and sequences. The three valid
constructs of the create clause are shown below:

CREATE TABLE table_name (

col_name col_type [not null]
[, col_name col_type [not null]]**

)

CREATE [UNIQUE] INDEX index_name ON table_name (

field_name
[, field_name] **

)

CREATE SEQUENCE ON table_name [STEP step_val] [VALUE initial_val]

An example of the creation of a table is shown below:

CREATE TABLE emp_details (
first_name char(15) not null,
last_name char(15) not null,
dept char(20),
emp_id int

)

mSQL supports a wide range of data types for storing numeric, textual, or other more specialised data. Numeric
data types are available for integer and floating point values. And integer type may be defined as either signed
or unsigned, and can range in size from 8 bits (int8) to 64 bits (int64). Special data types are included for
supporting efficient storage of network related information such as IP Addresses and Internet Address Blocks
(CIDR network definitions). The complete list of available types is provided in the table below.

Type Description

 char (len) String of characters (or other 8 bit data)

 text (len) Variable length string of characters. The defined length is used to indicate the expected average
length of the data. Any data longer than the specified length will be split between the data table
and external overflow buffers. Note : text fields cannot be used in an index.

int Signed integer values. Sub types include int8, int16, int32 and int64 for 8, 16, 32 and 64 bit values
respectively.

real Decimal or Scientific Notation real values

uint Unsigned integer values. Sub types include uint8, uint16, uint32, and uint64 for 8, 16, 32, and 64
bit values.

Page 8

date Date values in the format of ‘DD-Mon-YYYY’ such as ‘1-Jan-1997’

time Time values stored in 24 hour notation in the format of ‘HH:MM:SS’

money A numeric value with two fixed decimal places

ipv4 An Internet address in the format of ‘aaa.bbb.ccc.ddd’

cidr4
An Internet network address block specified in CIDR format ‘aaa.bbb.ccc.ddd/length’. When
comparing cidr4 values, the standard operators are overridden so that the < operator performs a
“less specific” comparison and the > operator performs a “more specific” comparison.

The table structure shown in the example would benefit greatly from the creation of some indices. It is assumed
that the emp_id field would be a unique value that is used to identify an employee. Such a field would normally
be defined as a unique index. Similarly, a common query may be to access an employee based on the
combination of the first and last names. A compound index (i.e. constructed from more than one field) would
improve performance. Naturally, such a compound index may have multiple entries with the same value (if
more than one person called John Smith works for the same company) so a non-unique index would be required.
We could construct these indices using :

CREATE UNIQUE INDEX idx1 ON emp_details (emp_id)
CREATE INDEX idx2 ON emp_details (first_name, last_name)

These indices will be used automatically whenever a query is sent to the database engine that uses those fields in
its WHERE clause. The user is not required to specify any special values in the query to ensure the indices are
used to increase performance.

Sequences provide a mechanism via which a sequence value can be maintained by the mSQL server. Sequences
are a numeric value that can be used as serial numbers, staff identifiers, invoice numbers, or any other
application that requires a unique numeric value. Having the server maintain the index allows for atomic
operations (such as getting the next sequence value) and removes the concerns associated with performing these
operations in client applications. A client application would need to send two queries (one to read the current
value and one to update the value) which introduces a “race condition” and the potential for the same sequence
value to be assigned to multiple items.

A sequence is associated with a table and a table may contain at most one sequence. Once a sequence has been
created it can be accessed by SELECTing the _seq system variable from the table in which the sequence is
defined. For example

CREATE SEQUENCE ON test STEP 1 VALUE 5
SELECT _seq FROM test

The above CREATE operation would define a sequence on the table called test that had an initial value of 5 and
would be incremented each time it is accessed (i.e. have a step of 1). The SELECT statement above would return
the value 5. If the SELECT was issued again, a value of 6 would be returned. Each time the _seq field is selected
from test the current value is returned to the caller and the sequence value itself is incremented.

Using the STEP and VALUE options a sequence can be created that starts at any specified number and is
increased or decreased by any specified value. The value of a sequence would decrease by 5 each time it was
accessed if it was defined with a step of -5.

Page 9

The Drop ClauseThe Drop ClauseThe Drop ClauseThe Drop Clause
The Drop clause is used to remove a definition from the database. It is most commonly used to remove a table
from a database but can also be used for removing several other constructs. In 3.x it can be used to remove the
definition of an index, a sequence, or a table. It should be noted that dropping a table or an index removes the
data associated with that object as well as the definition. Dropping a table removes any indices or sequences
defined for the table.

The drop clause cannot be used to remove an entire database. Dropping a database is achieved by using the
msqladmin utility program that is included in the software distribution.

The syntax of the drop clause as well as examples of its use are given below.

DROP TABLE table_name
DROP INDEX index_name FROM table_name
DROP SEQUENCE FROM table_name

Examples of the use of the drop clause for removing an entire table, an index and a sequence are shown below.

DROP TABLE emp_details
DROP INDEX idx1 FROM emp_details
DROP SEQUENCE FROM emp_details

TheTheTheThe Insert Clause Insert Clause Insert Clause Insert Clause
The insert clause is used to insert or add data to the database. When inserting data you may either specify the
fields for which you have provided data (if you are not providing data for every field in the data row) or you may
omit the field names if you are providing data for every field. If you do not specify the field names they will be
used in the order in which they were defined - you must specify a value for every field if you use this form of the
insert clause. If you provide the field names then the number of data values provided must match the number of
fields specified.

INSERT INTO table_name [(column [, column] **)]

VALUES (value [, value] **)

for example
INSERT INTO emp_details (first_name, last_name, dept, salary)

VALUES ('David', 'Hughes', 'Development',12345.00)
INSERT INTO emp_details

VALUES ('David', 'Hughes', 'Development',12345.00)

The Select ClauseThe Select ClauseThe Select ClauseThe Select Clause
The select clause is used to extract data from the database. It allows you to specify the particular fields you wish
to retrieve and also a condition to identify the records or rows that are of interest. The ANSI SQL standard
defines two features that are not supported by mSQL. The mSQL implementation of the select clause does not
support

• Nested selects
• Aggregate functions (e.g. count(), avg())

Page 10

It does however support:

• Relational joins between multiple tables
• Table aliases
• DISTINCT row selection for returning unique values
• ORDER BY clauses for sorting
• Normal SQL regular expression matching
• Enhanced regular expression matching including case insensitive and soundex
• Column to Column comparisons in WHERE clauses
• Complex conditions
• Value functions (e.g. upper())
• Result tables

The formal definition of the syntax for mSQL's select clause is

SELECT [DISTINCT] [table.]column [, [table.]column]**

[INTO result_table]
FROM table [= alias] [, table [= alias]]**
[WHERE [table.] column OPERATOR VALUE
[AND | OR [table.]column OPERATOR VALUE]**]
[ORDER BY [table.]column [DESC] [, [table.]column [DESC]]
[LIMIT num] [OFFSET num]

OPERATOR can be <, >, =, <=, =, <>, BETWEEN, LIKE, RLIKE, CLIKE or SLIKE
VALUE can be a literal value or a column name

The condition used in the where statement of a select clause may contain '(' ')' to nest conditions or to focus on
parts of the conditional evaluation. e.g. "where (age <20 or age >30) and sex = 'male'" .

A simple select that returns the first and last names of anybody employed in the finance department would be

SELECT first_name, last_name FROM emp_details
WHERE dept = 'finance'

To sort the returned data we would add an ORDER BY statement to the select clause. mSQL supports sorting on
multiple values in either ascending or descending order for each value. If a direction is not specified it defaults
to ascending order. To sort the data from the previous query in ascending order by last_name and descending
order by first_name we could use the query below. Note that the two sorting values are separated by a comma
and that the first_name field includes the DESC attribute to indicate we sorting is required in descending order.

SELECT first_name, last_name FROM emp_details

WHERE dept = 'finance'
ORDER BY last_name, first_name DESC

A query such as the one presented above may return multiple of the same value. If for example there were two
people named John Smith working in the finance department the name ‘John Smith’ would be returned twice
from the query. You may remove any duplicates from the returned data by providing the DISTINCT attribute
with the query. An example of using the DISTINCT attribute to remove duplicates from the above query is
given below.

SELECT DISTINCT first_name, last_name FROM emp_details

WHERE dept = 'finance'
ORDER BY last_name, first_name DESC

The amount of data returned by the query can be constrained using the LIMIT clause. By setting a LIMIT value
of 10, only the first 10 rows of data will be returned. The OFFSET clause can also be used to specify which
rows of the result data are returned to the client. By specifying “OFFSET 15”, the first 15 result rows are
skipped. The example query below could be used to generate a limited result set similar to that shown by
Internet search engines. In this example, the query will return the 10 result rows starting at the 21st row of
matching data (i.e. LIMITed to 10 rows and OFFSETed by 20 rows)

Page 11

SELECT first_name, last_name FROM emp_details
 ORDER BY last_name, first_name
 LIMIT 10 OFFSET 20

mSQL supports the use of functions for manipulating the date being retrieved from the database. It doesn’t
support aggregate functions such as COUNT and AVG. The functions that are provided by mSQL for the
manipulation of textual values are shown below.

Function Example Description

upper () upper(last_name) Produces an upper case version of the value

lower() lower(last_name) Produces a lower case version of the value

length() length(deptarment) Produces the number of characters in the value

substr() substr(name, 1, 5) Extracts a substring from the value, starting at character
1 and continuing for 5 characters.

chop() chop(name) Removes the last character from the value

translate() translate(name,‘a-z ‘,’A-Z_’) Replaces all characters matched by the second arg with
the corresponding character from the third arg. The
example replaces lowercase characters with uppercase
and replaces spaces with underscores.

replace() replace(value,’color’,’colour’) Rewrites ‘color’ to ‘colour’ in the value

soundex() soundex(value) Produces the numeric soundex value of the string

The functions provided by Mini SQL for the manipulation of numeric values are listed in the table below.

Function Example Description

abs() abs(value) Returns the absolute value of number

ceil() ceil(value) Produces the ceiling of the value (i.e. rounded up)

floor() floor(value) Produces the floor of the value (i.e. rouned down)

mod() mod(value) Returns the modulus of the value

sign() sign(value) Returns –1 for neg, +1 for pos and 0 for NULL values

power() power(value, power) Raises the value to the specified power

mSQL provides four regular expression operators for use in where comparisons. These operators may be used to
perform “fuzzy” matching on the data if you do not know the exact value for which you are searching. An
example of such a search would be if you were looking for any employee with a last_name starting with ‘Mc’
such as McCormack or McDonald. In such a situation you cannot provide a complete value for the last_name
field as you are only interested in part of the value.

Page 12

The standard SQL syntax provides a very simplistic regular expression capability that does not provide the
power nor the flexibility of which UNIX programmers or users will be accustomed. mSQL supports the
"standard" SQL regular expression syntax, via the LIKE operator, but also provides further functionality if it is
required. The available regular expression operators are:

• LIKE - the standard SQL regular expression operator.
• CLIKE - a standard LIKE operator that ignores case.
• RLIKE - a complete UNIX regular expression operator.
• SLIKE - a ‘soundex’ matching operator (i.e. phonetic matching)

Note : CLIKE, RLIKE, and SLIKE are not features of standard SQL and may not be available in other
implementations of the language. If you choose to use them you may have problems porting your application to
other database systems. They are, however, very convenient and powerful features of mSQL.

LIKE and CLIKE utilise the regular expression syntax as specified in the ANSI SQL standard. As mentioned
above, the ANSI standard regular expression feature provides only a very simplistic implementation of regular
expressions. It provides for only single and multiple character wildcards. It does not include enhanced features
such as value ranges, value exclusions or value groups. The syntax of the LIKE and CLIKE operators is
provided in the following table.

Operator Description

_ matches any single character

% matches 0 or more characters of any value

\ escapes special characters (e.g. '\%' matches % and '\\' matches \). All
other characters match themselves

Two examples of using the LIKE operator are provided below. In the first we are searching for anyone in the
finance department whose last name consists of any letter followed by 'ughes', such as Hughes. The second
example shows the query for the ‘Mc’ example mentioned earlier in this section.

SELECT first_name, last_name FROM emp_details

WHERE dept = 'finance' and last_name like '_ughes'

SELECT first_name, last_name FROM emp_details
WHERE dept = ‘finance’ and last_name like ‘Mc%’

The RLIKE operator provides access to the power of the UNIX standard regular expression syntax. The UNIX
regular expression syntax provides far greater functionality than SQL's LIKE syntax. The UNIX regex syntax
does not use the '_' or '%' characters in the way SQL's regex does (as outlined above) and provides enhanced
functionality such as grouping, value ranges, and value exclusion. The syntax available in the RLIKE operator is
shown in the table below. Tutorials for using UNIX regular expression matching are available in the manual
pages of any UNIX system (such as the manual pages for grep or ed).

Because RLIKE utilises a complete UNIX regex implementation, the evaluation of a condition containing the
RLIKE operator is quite complex. The performance of searches using the RLIKE operator will be slower than
those using the LIKE or CLIKE operator. You should only use the RLIKE operator if you cannot achieve your
desired matching using the more simplistic LIKE or CLIKE operators.

Page 13

Operator Description

. The dot character matches any single character

^ When used as the first character in a regex, the caret character forces the
match to start at the first character of the string

$ When used as the last character in a regex, the dollar sign forces the match
to end at the last character of the string

[] By enclosing a group of single characters within square brackets, the
regex will match a single character from the group of characters. If the ']'
character is one of the characters you wish to match you may specify it as
the first character in the group without closing the group (e.g. '[]abc]'
would match any single character that was either ']', 'a', 'b', or 'c'). Ranges
of characters can be specified within the group using the 'first-last' syntax
(e.g. '[a-z0-9]' would match any lower case letter or a digit). If the first
character of the group is the '^' character the regex will match any single
character that is not contained within the group.

* If any regex element is followed by a '*' it will match zero or more
instances of the regular expression. To match any string of characters you
would use ‘.*’ and to match any string of digits you would use ‘[0-9]*’

The SLIKE operator provides soundex matching of values (i.e. one value sounds like another value). It does not
use an explicit syntax in the same way as the other LIKE operators. You simply provide the word you wish to
match. If you wished to search for any name that sounded like ‘Hughes’, such as ‘Hues’ you could use SLIKE
‘Hughes’.

Relational joining is one of the most powerful features of a relational query language. The concept of “joining”
relates to “merging” multiple database tables together and extracting fields from the merged result. As an
example, if you had two tables defined, one containing employee details and another containing a list of all
current, you may wish to extract a list of the projects that each employee was working on. Rather than
duplicating the employee details in the projects table you could simply include the employees staff ID number in
the projects table and use a join to extract the first and last names.

The query below is an example of such an operation. The logic behind the query is that we want to extract the
first and last names of the employee, plus the name of the project on which the employee is working. We can
identify which combinations of the merged table we are looking for as they will have a common value for the
employee’s staff ID value. Because we are referencing multiple tables in the query, we must include the table
name for each field when it is included in the query (e.g. emp_details.first_name rather than just first_name)

SELECT emp_details.first_name, emp_details.last_name, project_details.project

FROM emp_details, project_details
WHERE emp_details.emp_id = project_details.emp_id
ORDER BY emp_details.last_name, emp_details.first_name

It is important to understand the inner workings of a join. If we are joining table A with table B, a merged row
will be created for all possible combinations of the rows of both tables. If table A contains only two rows and
table B contains 10 rows, then 20 merged rows will be generated and evaluated against the where condition. If
no where condition is specified then all 20 rows will be returned. If this example is extended so that table A
contained 1,000 rows and table B contained 2,500 rows then the result would be 1,000 * 2,500 merged rows
(that’s two and a half million rows!). Whenever a join is used there should normally be a common value in both
tables (such as the employee ID in our example) and the condition must include a direct comparison between
these two fields to ensure that the result set is limited to only the desired results.

mSQL places no restriction on the number of tables "joined" during a query so if there were 15 tables all
containing information related to an employee ID in some manner, and each table included the employee ID
field to identify the employee, data from each of those tables could be extracted, by a single query. As mentioned
before, a key point to note regarding joins is that you must qualify all field names with a table name. Remember
that you must qualify every column name as soon as you access more than one table in a single select.

Page 14

mSQL also supports table aliases so that you can perform a join of a table onto itself. This may appear to be an
unusual thing to do but it is a very powerful feature if the rows within a single table relate to each other in some
way. An example of such a table could be a list of people including the names of their parents. In such a table
there would be multiple rows with a parent/child relationship. Using a table alias you could find out any
grandparents contained in the table using the query below. The logic is to find any person who is the parent of
someone’s parent.

SELECT t1.parent, t2.child from parent_data=t1, parent_data=t2

WHERE t1.child = t2.parent

The table aliases t1 and t2 both point to the same table (parent_data in this case) and are treated as two different
tables that just happen to contain exactly the same data. Like any other join, the possible result set size is the
multiplication of the number of rows in each table. If a table is joined with itself, this equates to N2 rows where
N is the number of rows in the original table. Care must be taken to ensure that the result set is limited by the
condition specified otherwise the query can take a very long time to complete and has the potential to fill your
disk drive with temporary data as the query is processed.

Page 15

The Delete ClauseThe Delete ClauseThe Delete ClauseThe Delete Clause
The SQL DELETE clause is used to remove one or more entries from a database table. The selection of rows to
be removed from the table is based on the same where statement as used by the SELECT clause. In the SELECT
clause, the where condition is used to identify the rows to be extracted from the database. In the DELETE
clause, the where condition identifies the rows that are to be deleted from the database. As with all SQL queries,
if no where condition is provided, then the query applies to every row in the table and the entire contents of the
table will be deleted. The syntax for mSQL's delete clause is shown below

DELETE FROM table_name
WHERE column OPERATOR value
[AND | OR column OPERATOR value]**

OPERATOR can be <, >, =, <=, =, <>, LIKE, RLIKE, CLIKE, or SLIKE

An example of deleting a specific employee (identified by the employee ID number of the person) and also
deleting every employee within a particular salary range is given below.

DELETE FROM emp_details WHERE emp_id = 12345
DELETE FROM emp_details WHERE salary > 20000 and salary < 30000

Page 16

The Update ClauseThe Update ClauseThe Update ClauseThe Update Clause
The SQL update clause is used to modify data that is already in the database. The operation is carried out on one
or more rows as specified by the where construct. If the condition provided in the where construct matches
multiple rows in the database table then each matched row will be updated in the same way. The value of any
number of fields in the matched rows can be updated. The syntax supported by mSQL is shown below.

UPDATE table_name SET column=value [, column=value]**
WHERE column OPERATOR value
[AND | OR column OPERATOR value]**
OPERATOR can be <, >, =, <=, =, <>, LIKE, RLIKE, CLIKE or SLIKE

For example
UPDATE emp_details SET salary=30000 WHERE emp_id = 1234
UPDATE emp_details SET salary=35000, dept=’Development’ where emp_id = 1234

Page 17

C Programming APIC Programming APIC Programming APIC Programming API
Included in the distribution is the mSQL API library, libmsql.a. The API allows any C program to communicate
with the database engine. The API functions are accessed by including the msql.h header file into your program
and by linking against the mSQL library (using -lmsql as an argument to your C compiler). The library and
header file will be installed by default into /usr/local/ Hughes/lib and /usr/local/msql3/include respectively. An
example compilation of a client application (my_app.c in this case) is shown below. The header file and API
library are assumed to be in the default installation directory.

cc –c –I/usr/local/msql3/include my_app.c
cc –o my_app my_app.c -L/usr/local/msql3/lib -lmsql

Some versions of UNIX, usually those derived from SystemV, do not include the TCP/IP networking functions
in the standard C library. The mSQL API library includes calls to the networking functions to facilitate the
client/server nature of the API. On machines that do not include the networking functions in the standard C
library, the compilation illustrated above would fail due to “unresolved externals” with reference to function
names such as socket() and gethostbyname(). If this occurs then the networking code must also be linked with
the application. This is usually achieved by adding “-lsocket –lnsl” to the link command as shown below. If you
continue to have problems, please consult the “socket” and “gethostbyname” manual pages of your system to
determine the libraries you have to include in your link statement.

cc –c –I/usr/local/msql3/include my_app.c
cc –o my_app my_app.c -L/usr/local/msql3/lib -lmsql –lsocket –lnsl

Like the mSQL engine, the API supports debugging via the MSQL_DEBUG environment variable. The API
currently supports three debugging modules: query, api, and malloc. Enabling "query" debugging will cause the
API to print the contents of queries as they are sent to the server. The "api" debug module causes internal
information, such as connection details, to be printed. Details about the memory used by the API library can be
obtained via the "malloc" debug module. Information such as the location and size of malloced blocks and the
addresses passed to free() will be generated. Multiple debug modules can be enabled by setting MSQL_DEBUG
to a colon separated list of module names. For example setenv MSQL_DEBUG api:query

The API has changed slightly from the original mSQL API. Please ensure that you check the semantics and
syntax of the functions before you use them.

Query Related FunctionsQuery Related FunctionsQuery Related FunctionsQuery Related Functions

msqlConnect()
int msqlConnect (host)

char * host ;

msqlConnect() forms an interconnection with the mSQL engine. It takes as its only argument the name or IP
address of the host running the mSQL server. If NULL is specified as the host argument, a connection is made to
a server running on the localhost using the UNIX domain socket /dev/msqld. If an error occurs, a value of -1 is
returned and the external variable msqlErrMsg will contain an appropriate text message. This variable is defined
in "msql.h".

If the connection is made to the server, an integer identifier is returned to the calling function. This value is used
as a handle for all other calls to the mSQL API. The value returned is in fact the socket descriptor for the

Page 18

connection. By calling msqlConnect() more than once and assigning the returned values to separate variables,
connections to multiple database servers can be maintained simultaneously.

In previous versions of mSQL, the MSQL_HOST environment variable could be used to specify a target
machine if the host parameter was NULL. This is no longer the case. It should also be noted that communicating
with the server via UNIX sockets rather than TCP/IP sockets increases performance greatly. If you are
communicating with a server on the same machine as the client software you should always specify NULL as the
hostname. Using “localhost” or the name of the local machine will force the use of TCP/IP and degrade
performance.

msqlSelectDB()
int msqlSelectDB (sock , dbName)

int sock ;
char * dbName ;

Prior to submitting any queries, a database must be chosen. msqlSelectDB() instructs the engine which database
is to be accessed. msqlSelectDB() is called with the socket descriptor returned by msqlConnect() and the name
of the desired database. A return value of -1 indicates an error with msqlErrMsg set to a text string representing
the error. msqlSelectDB() may be called multiple times during a program's execution. Each time it is called, the
server will use the specified database for future accesses. By calling msqlSelectDB() multiple times, a program
can switch between different databases during its execution.

msqlQuery()
int msqlQuery (sock , query)

int sock ;
char * query ;

A query in SQL terminology is not the same as a query in the English language. In English, the word query
relates to asking a question whereas in SQL a query is a valid SQL command. It is a common mistake that
people believe that the msqlQuery function can only be used to submit SELECT commands to the database
engine. In reality, msqlQuery can be used for any valid mSQL command including SELECT, DELETE,
UPDATE etc.

Queries are sent to the engine over the connection associated with sock as plain text strings using msqlQuery().
As with previous releases of mSQL, a returned value of -1 indicates an error and msqlErrMsg will be updated to
contain a valid error message. If the query generates output from the engine, such as a SELECT statement, the
data is buffered in the API waiting for the application to retrieve it. If the application submits another query
before it retrieves the data using msqlStoreResult(), the buffer will be overwritten by any data generated by the
new query.

In previous versions of mSQL, the return value of msqlQuery() was either -1 (indicating an error) or 0
(indicating success). mSQL3.xadds to these semantics by providing more information back to the client
application via the return code. If the return code is greater than 0, not only does it imply success, it also
indicates the number of rows "touched" by the query (i.e. the number of rows returned by a SELECT, the
number of rows modified by an update, or the number of rows removed by a delete).

msqlStoreResult()
m_result * msqlStoreResult ()

Data returned by a SELECT query must be stored before another query is submitted or it will be removed from
the internal API buffers. Data is stored using the msqlStoreResult() function which returns a result handle to the
calling routines. The result handle is a pointer to a m_result structure and is passed to other API routines when

Page 19

access to the data is required. Once the result handle is allocated, other queries may be submitted. A program
may have many result handles active simultaneously. See also msqlFreeResult().

msqlFreeResult()
void msqlFreeResult (result)

m_result * result ;

When a program no longer requires the data associated with a particular query result, the data must be freed
using msqlFreeResult(). The result handle associated with the data, as returned by msqlStoreResult() is passed to
msqlFreeResult() to identify the data set to be freed.

msqlFetchRow()
m_row msqlFetchRow (result)

m_result * result ;

The individual database rows returned by a select are accessed via the msqlFetchRow() function. The data is
returned in a variable of type m_row which contains a char pointer for each field in the row. For example, if a
select statement selected 3 fields from each row returned, the value of the three fields would be assigned to
elements [0], [1], and [2] of the variable returned by msqlFetchRow(). A value of NULL is returned when the
end of the data has been reached. See the example at the end of this section for further details. Note: a NULL
value in the database is represented as a NULL pointer in the row.

msqlDataSeek()
void msqlDataSeek (result , pos)

m_result * result ;
int pos ;

The m_result structure contains a client side "cursor" that holds information about the next row of data to be
returned to the calling program. msqlDataSeek() can be used to move the position of the data cursor. If it is
called with a position of 0, the next call to msqlFetchRow() will return the first row of data returned by the
server. The value of pos can be anywhere from 0 (the first row) and the number of rows in the table. If a seek is
made past the end of the table, the next call to msqlFetchRow() will return a NULL.

msqlNumRows()
int msqlNumRows (result)

m_result * result ;

The number of rows returned by a query can be found by calling msqlNumRows() and passing it the result
handle returned by msqlStoreResult(). The number of rows of data sent as a result of the query is returned as an
integer value.

If no data is matched by a select query, msqlNumRows() will indicate that the result table has 0 rows. Note:
earlier versions of mSQL returned a NULL result handle if no data was found. This has been simplified and
made more intuitive by returning a result handle with 0 rows of result data.

Page 20

msqlFetchField()
m_field * msqlFetchField (result)

m_result * result ;

Along with the actual data rows, the server returns information about the data fields selected. This information is
made available to the calling program via the msqlFetchField() function. Like msqlFetchRow(), this function
returns one element of information at a time and returns NULL when no further information is available. The
data is returned in a m_field structure which contains the following information:-

typedef struct {

char * name ; /* name of field */
char * table ; /* name of table */
int type ; /* data type of field */
int length , /* length in bytes of field */
int flags ; /* attribute flags */

 } m_field;

Possible values for the type field are defined in msql.h. Please consult the header file if you wish to interpret the
value of the type or flags field of the m_field structure.

msqlFieldSeek()
void msqlFieldSeek (result , pos)

m_result * result ;
int pos ;

The result structure includes a "cursor" for the field data. Its position can be moved using the msqlFieldSeek()
function. See msqlDataSeek() for further details.

msqlNumFields()
int msqlNumFields (result)

m_result * result ;

The number of fields returned by a query can be ascertained by calling msqlNumFields() and passing it the result
handle. The value returned by msqlNumFields() indicates the number of elements in the data vector returned by
msqlFetchRow(). It is wise to check the number of fields returned because, as with all arrays, accessing an
element that is beyond the end of the data vector can result in a segmentation fault.

msqlClose()
int msqlClose (sock)

int sock ;

The connection to the mSQL engine can be closed using msqlClose(). The function must be called with the
connection socket returned by msqlConnect() when the initial connection was made. msqlClose() should be
called by an application when it no longer requires the connection to the database. If the connection isn’t closed,
valuable resources, such as network sockets or file descriptors, can be wasted.

Page 21

Schema Related FunctionsSchema Related FunctionsSchema Related FunctionsSchema Related Functions

msqlListDBs()
m_result * msqlListDBs (sock)

int sock ;

A list of the databases known to the mSQL engine can be obtained via the msqlListDBs() function. A result
handle is returned to the calling program that can be used to access the actual database names. The individual
names are accessed by calling msqlFetchRow() passing it the result handle. The m_row data structure returned
by each call will contain one field being the name of one of the available databases. As with all functions that
return a result handle, the data associated with the result must be freed when it is no longer required using
msqlFreeResult(). Failure to do so will waste memory.

msqlListTables()
m_result * msqlListTables (sock)
int sock ;

Once a database has been selected using msqlInitDB(), a list of the tables defined in that database can be
retrieved using msqlListTables(). As with msqlListDBs(), a result handle is returned to the calling program and
the names of the tables are contained in data rows where element [0] of the row is the name of one table in the
current database. The result handle must be freed when it is no longer needed by calling msqlFreeResult(). If
msqlListTables is called before a database has been chosen using msqlSelectDB an error will be generated.

msqlListFields()
m_result * msqlListFields (sock , tableName) ;
 int sock ;
 char * tableName;

Information about the fields in a particular table can be obtained using msqlListFields(). The function is called
with the name of a table in the current database as selected using msqlSelectDB() and a result handle is returned
to the caller. Unlike msqlListDBs() and msqlListTables(), the field information is contained in field structures
rather than data rows. It is accessed using msqlFetchField(). The result handle must be freed when it is no longer
needed by calling msqlFreeResult(). As with msqlListTables, msqlListFields will return an error if it is called
prior to a database being chosen using the msqlSelectDB function.

msqlListIndex()
m_result * msqlListIndex (sock , tableName , index) ;
 int sock ;
 char * tableName;
 char * index;

The structure of a table index can be obtained from the server using the msqlListIndex() function. The result
table returned contains one field. The first row of the result contains the symbolic name of the index mechanism
used to store the index. Rows 2 and onwards contain the name of the fields that comprise the index.

Page 22

An example of the data returned by msqlListIndex is shown below. The example shows the result of calling
msqlListIndex on a compound index. The index is defined as an AVL Tree index and is based on the values of
the fields first_name and last_name. Currently the only valid index type is ‘avl’ signifying a memory mapped
AVL tree index. Further index schemes will be added to mSQL in the future.

row[0]
avl
first_name
last_name

Date & Time Related FunctionsDate & Time Related FunctionsDate & Time Related FunctionsDate & Time Related Functions

msqlTimeToUnixTime()
time_t msqlTimeToUnixTime(msqltime)
 char * msqltime;

msqlTimeToUnixTime() converts an mSQL time value to a standard UNIX time value. The mSQL time value
must be a character string in the 24 hour format of “HH:MM:SS” and the returned value will be the number of
seconds since 1 Jan 1970 (the normal UNIX format).

msqlUnixTimeToTime()
char * msqlUnixTimeToTime(clock)
 time_t clock;

msqlUnixTimetoTime() converts a UNIX time value (seconds since the UNIX epoch) into a character string
representing the same time in mSQL time format (i.e. “HH:MM:SS” 24 hour format). The returned string is
statically declared in the API so you must make a copy of it before you call the function again.

msqlDateToUnixTime()
time_t msqlDateToUnixTime(msqldate)
 char * msqldate;

msqlDateToUnixDate() converts an mSQL date format string into a UNIX time value. The mSQL date format
is “DD-Mon-YYYY” (for example “12-Jun-1997”) while the returned value will be the number of seconds since
the UNIX epoch. The mSQL date routines will assume the 20th century if only 2 digits of the year value are
presented. Although the valid range of mSQL dates is 31st Dec 4096bc to the 31st Dec 4096, the UNIX format
cannot represent dates prior to the 1st Jan 1970.

Page 23

msqlUnixTimeToDate()
char * msqlUnixTimeToDate(clock)
 time_t clock;

msqlUnixTimeToDate() converts a standard UNIX time value to an mSQL date string. The time value is
specified as seconds since the UNIX epoch (1st Jan 1970) while the mSQL date string will contain the date
formatted as “DD-Mon-YYYY” (e.g. “12-Jun-1997”). A convenient use of this function is to determine the
mSQL date value for the current day using the following C code example.

clock = time();
date = msqlUnixTimeToDate(clock);

msqlSumTimes()
char * msqlSumTimes (time1, time2)
 char * time1,

*time2;

The msqlSumTimes() routine provides a mechanism for performing addition between two mSQL time
formatted strings. A literal addition of the values is returned to the calling routine in mSQL time format. As an
example, calling msqlSumTimes with the values “1:30:25” and “13:15:40” would return “14:46:05”.

msqlDateOffset()
char * msqlDateOffset(date, dOff, mOff, yOff)
 char * date;
 int dOff,
 mOff,
 yOff

The msqlDateOffset() function allows you to generate an mSQL date string that is a specified period before or
after a given date. This routine will determine the correct date based on the varying days of month. It is also
aware of leap years and the impact they have on date ranges. The new date is calculated using the specified date
and an offset value for the day, month and year. The example below would determine tomorrow's date

clock = time();
today = msqlUnixTimeToDate(clock);
tomorrow = msqlDateOffset(today , 1 , 0 , 0);

msqlDiffTimes()
char * msqlDiffTimes(time1, time2)
 char * time1,

*time2;

To determine the time difference between two time values, the msqlDiffTimes() function can be used. The two
time values must be mSQL time formatted text strings and the returned value is also an mSQL time string. A
restriction is placed on the times in that time1 must be less than time2.

Page 24

msqlDiffDates()
int msqlDiffDates(date1, date2)
 char * date1,

* date2;

The msqlDiffDates() function can be used to determine the number of days between two dates. Date1 must be
less than date2 and the two dates must be valid mSQL date formatted strings. In conjunction with the
msqlDiffTimes() function it is possible to determine a complete time difference between two pairs of times and
dates.

Miscellaneous FunctionsMiscellaneous FunctionsMiscellaneous FunctionsMiscellaneous Functions

msqlLoadConfigFile()
int msqlLoadConfigFile(file)
 char * file;

The msqlLoadConfigFile() function can be used to load a non-default configuration file into your client
application. The configuration file can include information such as the TCP/IP and UNIX ports on which the
desired mSQL server will be running. The file to be loaded is determined by the value of the file parameter. If
the value of the parameter is new, the msqlLoadConfigFile() function would search for the file in the following
places (and in the order specified).

Inst_Dir/new
Inst_Dir/new.conf
new

That is, if a file called "new" exists in the installation directory, it is loaded. Otherwise, an attempt will be made
to load a file called new.conf from the installation directory. If that fails, the filename specified is assumed to be
a complete, absolute pathname and an attempt to open the file is made. On failure, the function will return a
value of –1, otherwise a value of 0 is returned.

Page 25

System VariablesSystem VariablesSystem VariablesSystem Variables
Mini SQL 3.x includes internal support for system variables (often known as pseudo fields or pseudo columns).
These variables can be accessed in the same way that normal table fields are accessed although the information
is provided by the database engine itself rather than being loaded from a database table. System variables are
used to provide access to server maintained information or meta data relating to the databases.

System variables may be identified by a leading underscore in the variable name. Such an identifier is not
normally valid in mSQL for table or field names. Examples of the supported system variables and uses for those
variables are provided below.

_rowid_rowid_rowid_rowid
The _rowid system variable provides a unique row identifier for any row in a table. The value contained in this
variable is the internal record number used by the mSQL engine to access the table row. It may be included in
any query to uniquely identify a row in a table. An example of the use of the _rowid system variable is shown
below.

select _rowid, first_name, last_name from emp_details
where last_name = 'Smith'

update emp_details set title = 'IT Manager'
where _rowid = 57

The query optimiser is capable of utilising _rowid values to increase the performance of database accesses. In
the second example query above, only one row (the row with the internal record ID of 57) would be accessed.
This is in contrast to a sequential search through the database looking for that value which may result in only one
row being modified but every row being accessed. Using the _rowid value to constrain a search is the fastest
access method available in mSQL 3.x. As with all internal access decisions, the decision to base the table access
on the _rowid value is automatic and requires no action by the programmer or user other than including the
_rowid variable in the where clause of the query.

The rowid of a table row is intended to be used for “in place” updates. An example of such an update is the
query above. The rowid can be used when there is no other way to identify a particular row (e.g. there are two
people called John Smith and staff identifiers are not being used). It is not to be used as a substitute for an
application maintained key or index. Applications should use sequences if they wish to use server maintained
unique values.

_timestamp_timestamp_timestamp_timestamp
The _timestamp system variable contains the time at which a row was last modified. The value, although
specified in the standard UNIX time format (i.e. seconds since the epoch), is not intended for interpretation by
application software. The value is intended to be used as a point of reference via which an application may
determine if a particular row was modified before or after another table row. The application should not try to
determine an actual time from this value as the internal representation used may change in a future release of
mSQL.

The primary use for the _timestamp system variable will be internal to the mSQL engine. Using this information,
the engine may determine if a row has been modified after a specified point in time (the start of a transaction, for
example). It may also use this value to synchronise a remote database for database replication. Although neither
of these functions is currently available, the presence of a row timestamp is the first step in the implementation.

Page 26

Example queries showing possible uses of the _timestamp system variable are show below.

select first_name, _timestamp from emp_details
 where first_name like '%fred%' order by _timestamp

select * from emp_details where _timestamp 88880123

_seq_seq_seq_seq
The _seq system variable is used to access the current sequence value of the table from which it is being
selected. The current sequence value is returned and the sequence is updated to the next value in the sequence
(see the CREATE definition in the Language Specification section for more information on sequences). Once
the sequence value has been read from the server using a select statement, the value can be inserted into
“normal” fields of a table as a unique index value such as a serial number or staff identifier.

An example query using _seq system variable is shown below.
select _seq from staff

_sysdate_sysdate_sysdate_sysdate
The server can provide a central standard for the current date. If selected from any table, the _sysdate system
variable will return the current date on the server machine using the mSQL date format of ‘DD-Mon-YYYY’.

An example query using _sysdate system variable is shown below.
select _sysdate from staff

_systime_systime_systime_systime
The server can provide a central standard for the current time. If selected from any table, the _systime system
variable will return the current time on the server machine using the mSQL time format of ‘HH:MM:SS’.

An example query using _systime system variable is shown below.
select _systime from staff

_user_user_user_user
By selecting the _user system variable from any table, the server will return the username of the user who
submitted the query.

An example query using _user system variable is shown below.
select _user from staff

Page 27

Standard Programs and UtilitiesStandard Programs and UtilitiesStandard Programs and UtilitiesStandard Programs and Utilities
The mSQL distribution contains several programs and utilities to allow you to use and manage your databases.
The tools provided allow you to communicate with the database server, import data, export data, submit queries
and view your database structures. The sections below provide detailed descriptions on the various tools
provided in the distribution.

The monitor The monitor The monitor The monitor –––– msql msql msql msql

Usage
msql [-h host] [-f confFile] database

Options
-h Specify a remote hostname or IP address on which the mSQL server is running. The

default is to connect to a server on the localhost using a UNIX domain socket rather
than TCP/IP (which gives better performance).

-f Specify a non-default configuration file to be loaded. The default action is to load
the standard configuration file located in INST_DIR/msql.conf (usually
/usr/local/msql3/msql.conf). Please see the msqlLoadConfigFile entry in the API
section of this manual to understand the method used to select the config file from
the specified file name.

Description
The mSQL monitor is an interactive interface to the mSQL server. It allows you to submit SQL commands
directly to the server. Any valid mSQL syntax can be entered at the prompt provided by the mSQL monitor. For
example, by typing a “create table” clause at the mSQL monitor prompt you can instruct the database server to
create the specified table. The mSQL monitor is intended to be used as a mechanism for creating your database
tables and for submitting ad-hoc SQL queries to the server. It is not intended to be used for client application
development other than for testing queries before they are coded into your applications.

Control of the monitor itself is provided by four internal commands. Each command is comprised of a backslash
followed by a single character. The available commands are

\q Quit (also achieved by entering Control-D)

\g Go (Send the query to the server)

\e Edit (Edit the previous query)

\p Print (Print the query buffer)

Page 28

Schema viewer Schema viewer Schema viewer Schema viewer –––– relshow relshow relshow relshow

Usage
relshow [-h host] [-f confFile] [database [rel [idx]]]

Options
-h Specify a remote hostname or IP address on which the mSQL server is running. The

default is to connect to a server on the localhost using a UNIX domain socket rather
than TCP/IP (which gives better performance).

-f Specify a non-default configuration file to be loaded. The default action is to load
the standard configuration file located in INST_DIR/msql.conf (usually
/usr/local/msql3/msql.conf). Please see the msqlLoadConfigFile entry in the API
section of this manual to understand the method used to select the config file from
the specified file name.

Description
Relshow is used to display the structure of the contents of mSQL databases. If no arguments are given, relshow
will list the names of the databases currently defined. If a database name is given it will list the tables defined in
that database. If a table name is also given then it will display the structure of the table (i.e. field names, types,
lengths etc).

If an index name is provided along with the database and table names, relshow will display the structure of the
specified index including the type of index and the fields that comprise the index.

Admin program Admin program Admin program Admin program ---- msqladmin msqladmin msqladmin msqladmin

Usage
msqladmin [-h host] [-f confFile] [-q] Command

Options
-h Specify a remote hostname or IP address on which the mSQL server is running. The

default is to connect to a server on the localhost using a UNIX domain socket rather
than TCP/IP (which gives better performance).

-f Specify a non-default configuration file to be loaded. The default action is to load
the standard configuration file located in INST_DIR/msql.conf (usually
/usr/local/msql3/msql.conf). Please see the msqlLoadConfigFile entry in the API
section of this manual to understand the method used to select the config file from
the specified file name.

-q Put msqladmin into quiet mode. If this flag is specified, msqladmin will not prompt
the user to verify dangerous actions (such as dropping a database).

Page 29

Description
msqladmin is used to perform administrative operations on an mSQL database server. Such tasks include the
creation of databases, performing server shutdowns, etc. The available commands for msqladmin are

create db_name Creates a new database called db_name.

drop db_name Removes the database called db_name from the server. This will also
delete all data contained in the database!

shutdown Terminates the mSQL server.

reload Forces the server to reload ACL information.

version Displays version and configuration information about the currently
running server.

stats Displays server statistics.

copy fromDB toDB Copies the contents of the database specified as the fromDB into a
newly created database called toDB. If the toDB already exists an error
will be returned. This command provides a simple mechanism for
creating a backup copy of a data for use as a test or development
environment.

move fromDB toDB Renames an existing database called fromDB to toDB. The data is not
modified in any way.

Note : most administrative functions can only be executed by the user specified in the run-time configuration as
the admin user. They can also only be executed from the host on which the server process is running (e.g. you
cannot shutdown a remote server process).

Data dumper Data dumper Data dumper Data dumper ---- msqldump msqldump msqldump msqldump

Usage
msqldump [-h host] [-f confFile] [-c] [-v] [-t] [-w WhereClause] database [table]

Options
-h Specify a remote hostname or IP address on which the mSQL server is running. The

default is to connect to a server on the localhost using a UNIX domain socket rather
than TCP/IP (which gives better performance).

-f Specify a non-default configuration file to be loaded. The default action is to load the
standard configuration file located in INST_DIR/msql.conf (usually
/usr/local/msql3/msql.conf). Please see the msqlLoadConfigFile entry in the API
section of this manual to understand the method used to select the config file from the
specified file name.

-c Include column names in INSERT commands generated by the dump.

-t Dump only the table definition, not the table data

-v Run in verbose mode. This will display details such as connection results, etc.

-w The argument following the –w flag is used as a query condition to limit the data that
is dumped. An example may be -w “last_name = ‘Hughes’ “

Page 30

Description
msqldump produces an ASCII text file containing valid SQL commands that will recreate the table or database
dumped when piped through the mSQL monitor program. The output will include all CREATE TABLE
commands required to recreate the table structures, CREATE INDEX commands to recreate the indices, and
INSERT commands to populate the tables with the data currently contained in the tables. If sequences are
defined on any of the tables being dumped, a CREATE SEQUENCE command will be generated to ensure the
sequence is reset to its current value.

Data exporter Data exporter Data exporter Data exporter ---- msqlexport msqlexport msqlexport msqlexport

Usage
msqlexport [-h host] [-f conf] [-v] [-s Char] [-q Char] [-e Char] database table

Options
-h Specify a remove hostname or IP address on which the mSQL server is running. The

default is to connect to a server on the localhost using a UNIX domain socket rather
than TCP/IP (which gives better performance).

-f Specify a non-default configuration file to be loaded. The default action is to load
the standard configuration file located in INST_DIR/msql.conf (usually
/usr/local/msql3/msql.conf). Please see the msqlLoadConfigFile entry in the API
section of this manual to understand the method used to select the config file from
the specified file name.

-v Verbose mode.

-s Use the character Char as the separation character. The default is a comma.

-q Quote each value with the specified character.

-e Use the specified Char as the escape character. The default is \

Description
msqlexport produces an ASCII export of the data from the specified table. The output produced can be used as
input to other programs such as spreadsheets. It has been designed to be as flexible as possible. The user may
specify the character to use to separate the fields, the character to use to escape the separator character if it
appears in the data, and whether the data should be quoted and if so what character to use as the quote character.
The output is sent to stdout with one data row per line.

An example use of msqlexport would be to create a Comma Separated Values (CSV) file to be imported into a
popular spreadsheet application such as Microsoft Excel. The CSV format uses a comma to separate data fields
and quotation marks to quote the individual values. If a value contains a quotation mark, it is escaped by
prefixing it with another quotation mark. To generate a CSV representation of a table called staff in the company
database, the msqlexport command below would be used.

msqlexport –s , q “ –e “ company staff

Page 31

Data importer Data importer Data importer Data importer ---- msqlimport msqlimport msqlimport msqlimport

Usage
msqlimport [-h host] [-f conf] [-v] [-s Char] [-q Char] [-e Char] database table

Options
-h Specify a remote hostname or IP address on which the mSQL server is running. The

default is to connect to a server on the localhost using a UNIX domain socket rather
than TCP/IP (which gives better performance).

-f Specify a non-default configuration file to be loaded. The default action is to load
the standard configuration file located in INST_DIR/msql.conf (usually
/usr/local/msql3/msql.conf). Please see the msqlLoadConfigFile entry in the API
section of this manual to understand the method used to select the config file from
the specified file name.

-v Verbose mode.

-s Use the character Char as the separation character. The default is a comma.

-q Remove quotes around field values if they exist (the specified character is the quote
character).

-e Use the specified Char as the escape character. The default is \

Description
msqlimport loads a flat ASCII data file into an mSQL database table. The file can be formatted using any
character as the column separator. When passed through msqlimport, each line of the text file will be loaded as a
row in the database table. The separation character, as specified by the -s flag, will be used to split the line of text
into columns. If the data uses a specific character to escape any occurrence of the separation character in the
data, the escape character can be specified with the -e flag and will be removed from the data before it is
inserted. Some data formats (such as the CSV format) will enclose an entire value in quotation marks. The –q
option can be used to indicate such a format and to specify the character being used for quoting.

To import a file formatted in the Comma Separated Values format (CSV) into a table called staff in the company
database, the msqlimport command below would be used.

msqlimport –s , -q “ –e “ company staff

Page 32

Appendix A Appendix A Appendix A Appendix A ---- New Features in mSQL New Features in mSQL New Features in mSQL New Features in mSQL 3333

Single Process and MultiSingle Process and MultiSingle Process and MultiSingle Process and Multi----Process ServersProcess ServersProcess ServersProcess Servers
This generation of mSQL includes two version of the server: a single process and a multi-process (broker based)
server. The single process server is called msql3d and is similar in design to the 2.x server. The new broker
based server, called msql3_broker, uses a process farm model that allows multiple queries to be executed
simultaneously. The number of backend process (in addition to the actual broker process) is controlled by the
new Num_Children configuration file item. Each back-end process is capable of simultaneously executing a
client’s query.

Enhanced IndexingEnhanced IndexingEnhanced IndexingEnhanced Indexing
The query optimiser has been enhanced for the 3 release. It now supports index ranging as well as index equality
testing. As a result, conditions that use “<” “>” or “BETWEEN” will now result in an indexed access to the data
table rather than a sequential scan.

Data TypesData TypesData TypesData Types
Further data types have been added. The new types are listed below.

int8, int16, int32, int64 8, 16, 32 and 64 bit integers

uint8, uint16, uint32, uint64 8, 16, 32 and 64 bit unsigned integers

ipv4, ipaddr An internet address (version 4 only)

FunctionsFunctionsFunctionsFunctions
3 includes support for value functions in SELECT queries. The functions currently available for manipulating
character values include

upper (), lower(), length(), substr(), chop(), translate(), replace(), soundex()

Numeric values can be manipulated using the following functions

abs(), ceil(), floor(), mod(), sign(), power()

Regular ExpressionsRegular ExpressionsRegular ExpressionsRegular Expressions
Regular expression conditions (LIKE etc) can now be applied to TEXT fields. Previously, regular expression
testing could only be performed on fixed length character fields (CHAR) not variable length character fields
(TEXT).

Page 33

Tunable Memory UseTunable Memory UseTunable Memory UseTunable Memory Use
Runtime configuration items have been added to control two of the main areas of memory use: the table cache
and the internal sorting buffer. mSQL 2.x had an internal, hard coded size of 8 entries for the table cache. Each
entry consumes both memory and file descriptor resources. The size of the table cache is now dynamic and can
be set using the Table_Cache item of the configuration file.

The configuration file now also offers a Sort_Max_Mem item that defines the largest amount of memory that the
server is allowed to use during the processing of an ORDER or DISTINCT clause. If the operation will consume
more memory than the defined limit an alternate algorithm is used.

Higher PerformanceHigher PerformanceHigher PerformanceHigher Performance
An extensive audit of the server software has been undertaken with the aim of increasing both reliability and
performance. Both goals have been achieved. The single process server included with mSQL 3.x executes
standard benchmark tests 30% faster than the server distributed in the mSQL 2.0.12 release. On systems and
applications that can benefit from executing multiple queries simultaneously, the broker based server will
produce even greater performance increases in terms of user response times.

Page 34

Appendix B Appendix B Appendix B Appendix B ---- mSQL Error Messages mSQL Error Messages mSQL Error Messages mSQL Error Messages
Listed below is a complete set of the error messages generated by the mSQL database engine and the client API
library. Accompanying each error message is an indication of the cause of the error and actions that you can
take to resolve the problem. The errors relate to user-generated problems, such as incorrect SQL query syntax,
and also system related problems, such as running out of disk space. A user will not normally see many of these
errors.

API Library Error MessagesAPI Library Error MessagesAPI Library Error MessagesAPI Library Error Messages

Bad packet received from server
The server process received a data request that was incorrectly formatted. Such requests are ignored by the
server and are probably caused by using an incorrect implementation of the client API library.

Can't find your username. Who are you?
The mSQL client library has attempted to translate the User ID (Unix UID) of the process running the client
application into a username. The attempt failed. This will be the result if the UID of the client process is not
listed in the system’s password file.

Can't create UNIX socket
The API library has attempted to communicate with an mSQL server running on the local machine. In doing so,
it tried to create a UNIX domain socket over which the client / server communications would pass. The attempt
to create this socket failed. If this error message is generated when starting the server process, it implies that the
user running the server does not have permission to create the UNIX socket. Check the msql.conf file to
determine whether the mSQL_User field and the UNIX_Port fields are set correctly. If the error is generated by
a client application it can indicate that the client process has too many files open at the same time.

Can't connect to local mSQL server
An attempt was made to form a connection with an mSQL server running on the local machine. The attempt
failed. The mSQL server process is probably not running on this machine.

Can't connect to mSQL server on
An attempt to connect to an mSQL server process running on a remote machine failed. This is usually due to not
having an mSQL server running on the remote machine

Can't create IP socket
The API library attempted to create a TCP/IP socket for use in communicating with an mSQL process on a
remote machine. The attempt failed. This is commonly caused by having too many open files in the client
application.

Page 35

mSQL server has gone away
While the API library was communicating with an mSQL server process, the server process closed the client /
server connection. This can be caused by the server process being terminated, the machine on which the server
is running being rebooted, or a network failure if the server is on a remote machine.

Protocol mismatch. Server Version = x Client Version = y
The version of the mSQL client / server protocol used by the client API library and the server process do not
match. Upgrading the server software but not relinking the client applications that are communicating with the
server can cause this problem.

Unknown mSQL error
An error occurred while communicating with the server process but the server was not able to determine the
cause of the error.

Unknown mSQL Server Host
The hostname passed to the msqlConnect() function could not be resolved into an IP address. Ensure that the
listed machine is in the nameserver or hosts file of the machine running the client applications

Server Error MessagesServer Error MessagesServer Error MessagesServer Error Messages

Access to database denied
An attempt to access a database was rejected based on the contents of the access control list for that database.

Bad handshake
The initial handshake during connection establishment between a client application and the mSQL server process
was incorrectly formatted.

Bad order field. Field "x" was not selected
The field x was used in an “order by” statement but it was not included in the list of fields selected from the
table. You can only order by a field you have selected.

Bad type for comparison of 'x’
The value used within the where condition associated with the field x was of an incompatible type.

Can't perform LIKE on int value
An attempt was made to perform a regular expression match on an integer value. Regex searching can only be
performed on character fields.

Page 36

Can't perform LIKE on real value"
An attempt was made to perform a regular expression match on an real value. Regex searching can only be
performed on character fields.

Can't get hostname for your address
The server process tried to resolve a hostname from the IP address of the machine running the client application.
This will occur if the client machine is not listed in the nameserver. You may overcome this problem by setting
the Host_Lookup field of msql.conf to false. Note that disabling this option will effect access control for the
databases as the hostname of the client is used during ACL tests.

Can't open directory "x" (y)
An attempt to access the directory listed as x was not successful. The system error message is returned as y.

Can't use TEXT fields in LIKE comparison
A select query attempted to perform a regular expression match against a TEXT field. TEXT fields cannot be
used in regex matches.

Couldn't create temporary table (y)
An attempt to create the files associated with a temporary table failed during the execution of a query. This is
usually caused by having the permission of the msqldb/.tmp directory in the installation directory set incorrectly.
The system error message is returned as y.

Couldn't open data file for x (y)
An attempt to open the data file for a table called x in the currently selected database failed. The system error
message is returned as y.

Data write failed (x)
A write operation failed while attempting to store data into a table or temporary table. The system error message
describing the error is returned as x. The usual reason for this problem is lack of disk space during an insert
operation or a multi-table join that produced an overly large result set.

Error creating table file for "x" (y)
Creation of the data file for table x failed. A description of the error is returned in y

Error reading table "x" definition (y)
An error was encountered while the server attempted to read the table definition for the table called x in the
currently selected database. The system error message is returned as y.

Page 37

Field "x" cannot be null
An attempt was made during either an insert or an update operation to set the value of a NOT NULL field to
NULL.

Index field "x" cannot be NULL
An attempt to insert a NULL value into an index was rejected by the server. Indices cannot be set to NULL.

Index condition for "x" cannot be NULL
Because indices cannot contain NULL values, the attempt to use a NULL condition for an index lookup was
rejected.

Invalid date format "x"
The value “x” is not a valid date format and was rejected by the server. This may occur when inserting into a
date field, updating the value of a date field, or when using a date value in a where condition

Invalid time format "x"
The value “x” is not a valid time format and was rejected by the server. This may occur when inserting into a
time field, updating the value of a time field, or when using a time value in a where condition

Literal value for 'x' is wrong type
During either an insert or an update operation, an attempt was made to set the value of a field to a type that was
not compatible with the defined type of the field (e.g. setting an integer field to a character value).

No Database Selected
A query was sent to the server before a database had been selected. The client application must call the
msqlSelectDB function before submitting any queries.

No value specified for field 'x'
An insert operation sent to the database engine did not include a value for field x. Either the field x was
specified in the field list and not enough values were provided or the number of values provided did not match
the total number of fields in the table.

Non unique value for unique index
A value that was assigned to a unique index via either an insert or an update clause attempted to insert a
duplicate value.

Page 38

Out of memory for temporary table
An attempt by the server to malloc a memory segment was refused during the creation of a temporary table
(during execution of a query).

Permission denied
An attempt to access a database in a particular manner was refused due to the ACL configuration of the selected
database. Usually, write access (i.e. inserts or updates) are rejected because the database is listed as read-only
for that client.

Reference to un-selected table "x"
A select query referenced a variable from table x when x was not listed as a table in the select clause.

Table "x" exists"
An attempt to create a table called x failed because the table already exists.

Too many connections
An attempt to connect to the mSQL server process was refused because the maximum number of simultaneous
client connections has been reached.

Too many fields in query
The query attempted to reference more fields in a single query than the server permits. By default, up to 75
fields can be referenced in the same query.

Too many fields in condition
The number of conditions included in the where clause exceeded the allowed maximum of 75.

Unknown command
A unknown client / server protocol command was received by the server and was rejected.

Unknown database "x"
An attempt was made to access a database called x although no such database is defined on the server

Unknown table "x"
An attempt was made to access a table called x although no such table is defined in the currently selected
database.

Page 39

Unknown field "x.y"
An attempt was made to reference a field called x in a table called y. Table y of the currently selected database
does not contain a field called x.

Unknown system variable "x"
A query referenced a system variable called x when no such system variable exists.

Unqualified field in comparison
An unqualified field name was used in the where clause of a join. You must fully qualify all field names if you
reference more than one table.

Unqualified field "x" in join
The field x was not fully qualified in the field list of a join. All fields referenced in a join must be fully
qualified.

Value for "x" is too large
The value provided for field x in either an insert or an update clause was larger than the defined length of the
field

