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A B S T R A C T

The 2dF Galaxy Redshift Survey has now measured in excess of 160 000 galaxy redshifts.

This paper presents the power spectrum of the galaxy distribution, calculated using a direct

Fourier transform based technique. We argue that, within the k-space region

0:02 & k & 0:15 h Mpc21, the shape of this spectrum should be close to that of the linear

density perturbations convolved with the window function of the survey. This window

function and its convolving effect on the power spectrum estimate are analysed in detail. By

convolving model spectra, we are able to fit the power-spectrum data and provide a measure

of the matter content of the Universe. Our results show that models containing baryon

oscillations are mildly preferred over featureless power spectra. Analysis of the data yields 68

per cent confidence limits on the total matter density times the Hubble parameter

Vm h ¼ 0:20 ^ 0:03, and the baryon fraction Vb/Vm ¼ 0:15 ^ 0:07, assuming scale-

invariant primordial fluctuations.

Key words: cosmological parameters – large-scale structure of Universe.

1 I N T R O D U C T I O N

Present-day cosmological structure is thought to have formed by

the gravitational amplification of small density perturbations.

These fluctuations are readily quantified in terms of their Fourier

modes via the power spectrum, which is a statistically complete

description for a Gaussian field. The power spectrum is also of

direct physical interest, because it encodes information about the

formation of the primordial fluctuations, and especially about how

these are modified according to the matter content of the Universe.

In this paper, we present an estimate of the power spectrum of

the galaxy distribution in the 2dF Galaxy Redshift Survey

(2dFGRS). The 2dFGRS is designed around the 2dF multi-fibre

spectrograph on the Anglo-Australian Telescope, which is capable

of obtaining spectra for up to 400 objects simultaneously over a 28

diameter field of view. Full details of the instrument and itsPE-mail: wjp@roe.ac.uk
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performance are given in Lewis et al. (2000). See also http://www.

aao.gov.au/2dF/. The survey aims to obtain redshifts for 250 000

galaxies to an extinction-corrected magnitude limit of bJ , 19:45.

A description of the survey is given by Colless et al. (2001); full

details of the present status can be obtained from http://www.mso.

anu.edu.au/2dFGRS/.

At the time of writing, the 2dFGRS is the largest existing galaxy

redshift survey, following a natural progression from studies such

as the CfA survey (Huchra et al. 1990), the LCRS (Shectman et al.

1996), and the PSCz survey (Saunders et al. 2000). The data and

analysis presented in this paper covers the sample with 166 490

redshifts observed prior to 2001 February. A sample of this size

allows large-scale structure statistics to be measured with very

small random errors, and we present an initial power-spectrum

analysis of the 2dFGRS here. Section 2 details some of the

practical issues concerning sample selection, and Section 3

discusses power-spectrum estimation. The survey coverage in

angular position and redshift is relatively complex, and the

convolving effects of the survey window are significant compared

to the small random errors. These effects are therefore studied in

some detail, both analytically and in comparison to mock data,

in Section 4. This leads to a robust estimate of the covariance

matrix for the estimates of the power at different wavenumbers,

which is presented in Section 5. The covariance matrix allows

proper likelihood-based model fitting, which is carried out in

Section 6. The power-spectrum fits clearly indicate a low-density

universe with Vm h . 0:2, in agreement with many past studies.

We also show that the preferred model requires a degree of baryon

oscillations in the power spectrum, corresponding to a baryonic

fraction of about 15 per cent. We conclude by considering the

consistency between this picture and other lines of evidence.

2 T H E 2 D F G R S S A M P L E

2.1 The angular mask

When complete, the angular geometry of the 2dFGRS will consist

of two declination strips plus 100 random 28 fields. One strip is

near the Southern Galactic Pole (SGP) and covers approximately

858 � 158; the other strip is near the Northern Galactic Pole (NGP)

and covers 758 � 108. These strips are not coplanar, which is a

significant factor in using the survey to measure 3D structure.

The 100 random fields are spread uniformly over a 7000 deg2

region near the SGP; the present analysis includes 71 of these

fields.

The input catalogue is a revised and extended version of the

APM galaxy catalogue (Maddox et al. 1990a,b; Maddox,

Efstathiou & Sutherland 1990c, 1996). This includes over 5 �

106 galaxies down to bJ ¼ 20:5 over ,104 deg2. The APM

catalogue was used previously to recover the 3D power spectrum of

galaxies by inverting the appropriate integral equations (Baugh &

Efstathiou 1993; Efstathiou & Moody 2001). However, these

techniques are demanding in sample variance and photometric

uniformity, and we expect that a fully 3D analysis should yield a

more robust result.

An adaptive tiling algorithm is employed to cover the survey

area with a minimum number of overlapping 2dF fields. With this

algorithm we are able to achieve a 93 per cent sampling rate with

on average fewer than 5 per cent wasted fibres per field. Over the

whole area of the survey there are in excess of 250 000 galaxies. At

the present intermediate stage of the survey, unobserved fields

mean that the proportion of targets with known redshifts is a

strongly varying function of position. In addition, regions around

bright stars are omitted, so the 2dFGRS angular mask is a

complicated pattern on the sky (see e.g. Colless et al. 2001).

Nevertheless, because the tiling algorithm is known, it is possible

to generate random catalogues that are subject to the same

selection effects. A number of different codes have been written to

achieve this task, with consistent results. Furthermore, because a

3D power spectrum analysis averages over directions, small

imperfections in reproducing the sky pattern of the real data tend to

wash out. For example, we tried adding magnitude offset errors of

DM ¼ ^0:2 in each 58 Schmidt field, but the power spectrum did

not change significantly.

Given the sampling pattern on the sky, there are two possible

analysis strategies: one can either build a similar variation into any

random catalogue, or the analysis can use a uniform random

catalogue, weighting each galaxy by the reciprocal of the

sampling. The former strategy is superior in terms of shot noise,

but the latter is necessary if the mask is correlated with real

structure (e.g. fibre crowding problems in high-density regions).

We obtain almost identical results with either strategy, demonstrat-

ing that the adaptive tiling has achieved its target of uniform

selection of targets.

2.2 Redshift selection

The sample is chosen to be magnitude-limited at bJ ¼ 19:45 after

extinction-correcting all the magnitudes in the APM catalogue

(Schlegel, Finkbeiner & Davis 1998). This limit was chosen

because the mean number of galaxies per square degree then

matches the density of fibres available with 2dF. The resulting

distribution of galaxy redshifts n(z) dz has a median of

approximately 0.11, and can be fitted by

nðzÞ dz/
ðz/ zcÞ

g21

½1 1 ðz/ zcÞ
g/b�11b

dz; ð1Þ

where zc, g and b are fitted parameters. Fitting to all of the galaxy

redshifts gives zc ¼ 0:144, g ¼ 2:21 and b ¼ 0:554. However, the

redshift distribution is expected to vary with position on the sky,

because the survey depth is not completely uniform. This arises

because the spectroscopic success rate is a function of apparent

magnitude: data from poorer nights are biased to brighter objects,

and thus to lower redshifts. Also, our estimates of galactic

extinction and CCD calibration of the zero points of the individual

photographic plates have been revised since the original input

catalogue was defined. All these effects contribute to a modulation

of the depth of the survey, which is accounted for when making the

random catalogue that defines the survey volume. Because these

estimates of non-uniformity can never be very precise, we have

chosen to allow the parameters of the n(z) fit to be different in

distinct zones of the sky, treating the NGP, SGP and random fields

separately. Analysis of mock catalogues shows that this makes only

a small difference to the power estimates at k . 0:02 h Mpc21,

which we use as our normal analysis limit.

3 E S T I M AT I N G T H E P OW E R S P E C T R U M

3.1 The FKP method

Following the Fourier transform based approach of Feldman,

Kaiser & Peacock (1994, hereafter FKP), each galaxy in the

sample was placed onto a 512 � 512 � 256 grid, scaled to cover the
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entire sample in each direction. The size of the cuboid that just

contains all of the data to a redshift limit at z ¼ 0:25 is 1388 �

1017 � 685 h 23 Mpc3; assuming a flat Vm ¼ 0:3 cosmology. The

grid used therefore leads to approximately equal Nyquist frequen-

cies in each direction. For this grid, k ¼ 0:15 h Mpc21 corresponds

to a conservative 13 per cent of the minimum Nyquist frequency.

Comparing this with results obtained using different size grids also

suggests that aliasing is not a problem for frequencies k ,

0:15 h Mpc21; although, of course, it will affect the result at large k.

As shown by FKP, the galaxies must be weighted in order to opti-

mize the balance between cosmic variance and shot noise. Assuming

that the fluctuations are Gaussian, the optimal FKP weight is

wðz; u;fÞ ¼
1

½1 1 �P�nðz; u;fÞ�
; ð2Þ

where n̄(z, u, f) is the expected galaxy density. A value of �P ¼

5000 h 23 Mpc3 was assumed, but this is not critical. For a high-

density sample like the 2dFGRS, one very nearly gives equal

weight to each volume element, independent of P̄. We applied an

upper redshift limit of z ¼ 0:25, to remove regions with a very low

galaxy density where the choice of P̄ would matter. We also

defined a lower limit of z . 0:003. With restriction to objects with

redshift quality flag $3, this leaves a sample of 147 024 objects.

In order to transform from redshifts to distances in h Mpc, we

need to assume values for Vm and Vv. Strictly, when fitting models

to the data we should alter these values to match the model.

However, the power spectrum is only weakly dependent on this

choice: we have tried both an Einstein–de Sitter cosmology and a

flat Vm ¼ 0:3 cosmology and find approximately the same best-

fitting model parameters (see Table 1). Normally, we will present

results for a flat Vm ¼ 0:3 cosmology.

Before Fourier transforming the data, we need to convert from a

distribution of galaxies to a distribution of overdensities. To do

this, the survey volume was defined by a random catalogue that

mimics the sampling of the original data. In order to create such

a sample, we have used the known angular position and

completeness of each field (described in Section 2.1), coupled

with an empirically determined fit to the redshift distribution of the

2dFGRS catalogue (described in Section 2.2). The variations in

observing conditions, and the corresponding spectroscopic success

rate, mean that there are in practice variations in the survey depth

with sky position. These are allowed for by appropriate

perturbations of the redshift distribution in the random catalogue,

although this again turns out to be an unimportant effect. The

random catalogue we created had five times the number of points in

the galaxy catalogue.

Having Fourier transformed the resulting overdensity field, we

simply subtracted the shot noise contribution from the result, and

re-normalized P(k) in order to correct for a differing sample

volume and Fourier transform volume, and to correct for the

weighting (FKP equations 2.1.3 and 2.1.10). P(k) was then

spherically averaged over k-space shells.

The power spectrum of the galaxy distribution needs to be

interpreted with care, as it is altered from that of the initial density

fluctuations (the linear power spectrum) by a number of effects:

(i) The collapse of structures. The mass no longer obeys the

linear power spectrum on small scales after it has undergone non-

linear collapse.

(ii) Galaxies are not expected to form a Poisson sampling of the

underlying mass fluctuations, and are biased with respect to this

distribution.

(iii) Random oscillations of galaxies within larger collapsed

objects causes ‘Fingers of God’ redshift space distortions that

damp the estimates of the small-scale power.

(iv) The infall of galaxies into concentrations of mass on large

scales (Kaiser 1987) enhances the observed power in the radial

direction, creating a large-scale redshift distortion.

Additionally, the recovered power spectrum estimated using the

FKP approach is the convolution of the galaxy power spectrum

with the ‘window function’ jWkj
2 of the survey [Wk being the

Fourier transform of the product of the survey mask and redshift

selection function times w(z); see FKP equation 2.1.7]:

P̂FKPðkÞ/

ð
Ptrueðk 2 qÞjWkðqÞj

2
d3q: ð3Þ

In Section 3.2 we show how we may model the effect of the

window function, by convolving power spectra with an analytic fit

to the spherically averaged window function, and empirically by

analysing realizations of Gaussian density fields within the survey

region. The inverse problem of deconvolving the window function

from the power spectrum is not attempted in this work.

3.2 The window function

The 2dFGRS window function jWkj
2 is not compact, and has a

significant effect on the recovered power spectrum. Although Wk is

anisotropic as a result of the complicated real-space selection

function, we are normally interested in the spherical average of the

final power spectrum over k-space shells. Therefore, if Ptrue is

isotropic, we obtain the same result by convolving just with the

spherical average of jWkj
2. A good approximation to the averaged

window is

kjWkj
2l ¼ ½1 1 ðk/0:00342Þ2 1 ðk/0:00983Þ4�21: ð4Þ

This fit is compared to the exact 2dFGRS window in Fig. 1. The

potential cause of problems is the tail to high k. The convolution

involves a normalization factor
Ð
jWkj

2
4pk 2 dk, and a significant

part of this volume lies outside the ‘core’, which has a scale of

0.003 h Mpc21. In this respect, the 2dFGRS window is quite like an

adaptive-optics point-spread function.

Of course, redshift-space distortions mean that the true power

spectrum will not be strictly isotropic in practice. However, the

simulation results described below suggest that the effect of such

deviations are small and do not have a significant impact on the

recovered power spectrum.

In order to demonstrate the effect of this window function on

power spectra, we have sampled realizations of a linear density

field covering the volume of the 2dFGRS data. Averaging the

results of this analysis for 1000 realizations with different phases,

and comparing with the true input power spectrum, we can

quantify the effect of the window function. This is shown in Fig. 2

for spectra corresponding to two different cosmologies. The shape

of the spectra are significantly altered, and any oscillations are

damped. Analytically convolving the power spectra with the fit to

the window function given by equation (4) provides the same

result.

Because the random catalogue is scaled to match the

normalization of the galaxy catalogue, the average overdensity is

artificially set to zero, forcing Pð0Þ ¼ 0. This self-normalization

results in a deficit in the measured power spectrum, equivalent to

subtracting a scaled copy of the window function centred on k ¼ 0.

However, this is a very small effect in the regime of interest

2dFGRS: power spectrum 1299
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because jWkj
2 is a rapidly decreasing function of k (see Fig. 1), and

P(k) is expected to be an increasing function of k for small k. The

effect of this self-normalization is shown in Fig. 2 for model power

spectra.

3.3 Results

The recovered 2dFGRS power spectrum is presented in Fig. 3. To

highlight features in the spectra presented in this paper, we have

plotted their ratio with a smooth cold dark matter (CDM) power

spectrum Pðk;Vm h ¼ 0:2;Vb/Vm ¼ 0Þ that has no baryon

features. We also take a normalization of s8 ¼ 1 for this reference

model. All of the power spectra used in this paper are calculated

using the transfer function fitting formulae of Eisenstein & Hu

(1998) and assume a scale-invariant primordial spectrum, unless

stated otherwise. We have parametrized the model power spectra

explicitly by Pðk;Vm h;Vb/VmÞ in order to avoid confusion with

differing definitions of the commonly used shape parameter G.

The raw results are gratifyingly accurate, with fractional errors

in the power of only ,15 per cent out to k ¼ 0:02 h Mpc21. To

within about 20 per cent, the observed spectral shape is that of

the Pðk;Vm h ¼ 0:2;Vb/Vm ¼ 0Þ reference model between

0:02 h Mpc21 , k , 0:6 h Mpc21: At smaller scales, the Finger-

of-God redshift-space smearing is clearly seen to reduce the power.

In many ways, the most striking features are the suggestions of

oscillatory modulations, with a possible peak at k .
0:065 h Mpc21 and possible troughs at k . 0:035 h Mpc21 and

k . 0:1 h Mpc21. However, it is clear that the window function has

caused adjacent power estimates to be closely correlated, so a

proper covariance analysis is required before any significance can

be given to these apparent features. Given the precision of the basic

power estimates, it is necessary to attain an accurate measure of the

systematic effects listed above that modify the shape of the

spectrum. We achieve this in the next Section by using mock data.

4 T E S T S O N M O C K DATA

Redshift-space and non-linear effects mean that the shape of the

recovered power spectrum gives information about the linear

power spectrum only at small values of k. The easiest way to model

both these effects is via numerical simulation. Using an empirically

motivated biasing scheme, it is possible to place galaxies within

N-body simulations and provide mock catalogues designed to

mimic the 2dFGRS catalogue for different cosmological models

(Cole et al. 1998; Baugh et al., in preparation). In this section we

Figure 1. The 2dFGRS window function in Fourier space. The fitting

formula of equation (4) is plotted (solid line) compared to the spherically

averaged power obtained by Fourier transforming a random catalogue

created to match the 2dFGRS window function (solid circles). This

catalogue, containing five times as many points as the true galaxy catalogue

was placed on a 512 � 512 � 256 grid that encompassed all the data. Values

from individual grid points are also plotted (dots), and show the anisotropy

of the window function.

Figure 2. The effect of convolving a linear power spectrum with the

2dFGRS window function. Two model power spectra are compared: the top

panel shows a power spectrum including a baryonic component

Pðk;Vm h ¼ 0:2;Vb/Vm ¼ 0:16Þ, while the bottom panel shows a power

spectrum Pðk;Vm h ¼ 0:2;Vb/Vm ¼ 0Þ with no baryonic component.

These spectra are divided by a smooth reference model, Pðk;Vm h ¼ 0:2;

Vb/Vm ¼ 0Þ: The upper solid lines show the unconvolved power spectra,

and the lower solid lines show the power spectra convolved with the fit to

the window function given by equation (4). The dashed lines show the

average power spectrum expected from data which has had the average

over-density artificially set to zero (see Section 3.2 for details). Solid

symbols show the shape of the average recovered power spectrum from

1000 Gaussian realizations of the density field (with different phases), place

on a 256 � 256 � 128 grid at locations covered by the 2dFGRS. Because of

the relatively coarse grid used, aliasing swamps the signal at k .

0:15 h Mpc21; and data are only shown for the range of k over which the

2dFGRS power spectrum is fitted (Section 6). This region is delineated by

the vertical dotted lines.

1300 W. J. Percival et al.
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use these mock catalogues to demonstrate that for k ,

0:15 h Mpc21 the only important effect on the power spectrum is

the convolution with the window function.

Fig. 4 shows a collection of power spectra calculated from

samples drawn from the LCDM and tCDM Hubble volume

simulations (see Cole et al. 1998; Baugh et al., in preparation, and

http://star-www.dur.ac.uk/,cole/mocks/main.html for details).

The large catalogues constructed in this work were re-sampled

depending on angular position and redshift to match the correct

window function for the 2dFGRS data. Power spectra were

calculated exactly as for the 2dFGRS data. Fig. 4 illustrates the

factors that transform the linear mass power spectrum into the non-

linear galaxy spectrum. Panel (a) shows the power spectrum of the

mass at z ¼ 0. This demonstrates the increase in power on small

scales caused by the collapse of haloes. Panel (b) differs in that we

now have to consider the effect of bias (artificially added to the

simulation), and the window function. In panel (c), we analyse

samples designed to mimic the 2dFGRS data as closely as possible,

including redshift-space effects: the Finger-of-God effect that

decreases small-scale power, and the Kaiser effect that enhances

the power. The redshift-space and non-linear effects cancel to some

extent and give approximately the correct level of P(k) out to

k , 0:5 h Mpc21. However, the shape of the power spectrum is

altered for k * 0:2 h Mpc21.

We will therefore assume that, at k , 0:15 h Mpc21, redshift

space distortions and non-linear effects have an insignificant effect

on the shape of P(k). Allowing the normalization to vary removes

any large-scale constant bias; the bias is not expected theoretically

to vary significantly with k on these large scales (Kauffmann,

Nusser & Steinmetz 1997; Benson et al. 2000). In the future,

measurements of b;V0:6
m /b from redshift-space distortions as a

function of scale will test directly the degree to which this is true

(see Peacock et al. 2001 for the first 2dFGRS results on redshift-

space distortions). This region of the power spectrum therefore

directly provides information about the shape of the linear power

spectrum, and can be used with models of the transfer function to

provide constraints on cosmological parameters. Although this

conclusion has only been justified here for two specific assumed

models, we have performed similar tests on a wider range of

models. In Table 1, we show explicitly how the results depend on

the range of wavenumber considered.

5 E S T I M AT I N G T H E C OVA R I A N C E M AT R I X

The P(k) data points in Fig. 3 are not independent, and correlations

extend across finite regions of k-space. This is predominantly

caused by the convolution with the window function, although

there is also a contribution from non-linear effects (Meiksin &

White 1999; Scoccimarro, Zaldarriaga & Hui 1999) and redshift-

space effects. Particular care must therefore be taken in

interpreting ‘wiggles’ in the power spectrum as significant

features. In order to quantify these correlations, we have estimated

the covariance matrix for the data points with k , 0:15 h Mpc21:

A large number of independent realizations of P(k) are required

in order to have sufficient signal-to-noise in the covariance matrix.

It would be too time-consuming to perform separate numerical

simulations for each data set. Instead, we have created 1000

realizations of a Gaussian random field on a 256 � 256 � 128 grid

covering the region of the 2dFGRS survey. For k , 0:15 h Mpc21;

using a smaller grid than that used for the 2dFGRS data does not

significantly affect the result, and reduces the computational

burden. The resulting power spectra, determined as for the

2dFGRS data, were used in Section 3.2 to demonstrate the effect of

convolving P(k) by the window function. These realizations

provide an estimate of the cosmic variance within the 2dFGRS

volume. The contribution from shot noise has been calculated by

analysing similar Monte Carlo realizations, and has been included

in our estimate of the covariance matrix.

Estimating the covariance matrix in this way does not take into

account non-linear and redshift-space effects, which add to the

covariances. However, these effects should be small over the region

of k-space that we are fitting. As a test of this, we have estimated

the covariance matrix using 10 catalogues drawn from Vm h ¼

0:25 Vb/Vm ¼ 0 CDM simulations with different phases by Cole

et al. (1998). These catalogues were calculated using Cole et al.

(1998) bias model 1. The correlations calculated over the k-space

region 0:02 , k , 0:15 h Mpc21 were similar in scale to those

calculated from the Gaussian fields. However, we find that the

errors in P(k) calculated from numerical simulations are 16 per

cent larger than those determined from Gaussian simulations,

although there is no evidence for a change in shape of the diagonal

elements of the covariance matrix for k , 0:15 h Mpc21. We do see

a change at k . 0:15 h Mpc21 that is consistent with non-linear and

redshift-space effects, which are expected to be an increasing

function of k. In this work we adopt the conservative approach and

renormalize the covariance matrix calculated from the Gaussian

realizations to match the normalization of the numerical

simulations, whilst keeping the correlation matrix the same. This

renormalization does not significantly affect the primary results of

this paper: the derived best-fitting parameters are the same with or

without this renormalization.

6 F I T T I N G T O T H E P OW E R S P E C T R U M

6.1 Model parameters

Model power spectra for different cosmologies have been created

Figure 3. The 2dFGRS estimate of the redshift-space galaxy power

spectrum, expressed as the ratio to a linear-theory CDM Pðk;Vm h ¼

0:2;Vb/Vm ¼ 0Þ power spectrum with n ¼ 1 & s8 ¼ 1. These data do not

estimate the true power spectrum, but give the power spectrum convolved

with the window function (see Section 3.2). Error bars are determined from

the diagonal elements of the covariance matrix (calculated in Section 5), for

the 0:02 , k , 0:15 h Mpc21 data constrained by the vertical dotted lines.

This is the region fitted in Section 6.4.

2dFGRS: power spectrum 1301
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to compare with the 2dFGRS data using the transfer function fitting

formulae of Eisenstein & Hu (1998). These formulae are essentially

perfect in the regime of interest, and show that the effect of baryons

on the power spectrum is not well-approximated by a change in

Vm h. These differences are important in order to be able to fit the

2dFGRS data with both parameters. The shape of the power spec-

trum is primarily dependent on Vm h, and only weakly dependent on

h. We have therefore chosen to fit Vm h rather thanVm. Similarly, the

strength of baryon oscillations depend primarily on Vb/Vm. We

have therefore calculated model spectra for cosmologies chosen on

a 40 � 40 � 40 grid in ðVm h;Vb/Vm; hÞ space, covering

0:1 , Vm h , 0:8;

0:0 , Vb/Vm , 0:5; ð5Þ

0:4 , h , 0:9:

These limits act effectively as uniform prior probability densities

for the parameters. A scale-invariant n ¼ 1 primordial spectrum

was assumed initially, following results from CMB analysis (e.g.

Jaffe et al. 2000). We have numerically convolved these power

spectra on the scales 0:02 , k , 0:15 h Mpc21 using the window

function fitting formula presented in Section 3.2. The normal-

ization of the model spectra was allowed to vary to account for an

unknown large-scale linear bias.

Following analysis of the data using these model spectra, we

have also created models on a finer 40 � 40 � 40 grid covering

0:1 , Vm h , 0:3, 0:0 , Vb/Vm , 0:4 and 0:4 , h , 0:9 in

order to further constrain the fit in this region of parameter space.

We emphasize that Vm is the total matter density parameter, i.e.

Vm ¼ Vcdm 1 Vb. Our results are not strongly dependent on Vv.

6.2 Results

The likelihood of each model has been estimated using a

Figure 4. A comparison of power spectra determined from the results of the LCDM and tCDM Hubble volume simulations divided by a Pðk;Vm h ¼

0:2;Vb/Vm ¼ 0Þ reference model. Panel (a): the average spectrum recovered from the z ¼ 0 distribution of mass in 8 cubes each of side 1500 h Mpc (LCDM)

or 1000 h Mpc (tCDM) (solid circles with 1s errors: the extremal data bound the shaded area), compared to the scaled input power spectrum (solid line). Here,

the difference between the two is dominated by the non-linear collapse of small-scale structures at k . 0:15 h Mpc21. The tCDM mass power spectrum is

compared to a reference model with s8 ¼ 0:6 (rather than s8 ¼ 1:0Þ in order that it has approximately the same normalization as the other data. Panel (b): the

average recovered power spectrum from 35 (LCDM) and 30 (tCDM) real-space galaxy catalogues sampled from the simulations to match the 2dFGRS window

function (solid circles with 1s errors: the extremal data bound the shaded area). These are compared with the linear spectrum convolved with the analytic

approximation to the window function given by equation (4) (solid line). The difference between these two is dominated by both bias (used to create the galaxy

catalogue) and non-linear effects. Panel (c): the average recovered power spectrum from 35 (LCDM) and 30 (tCDM) redshift-space galaxy catalogues

designed to fully mimic the 2dFGRS redshift-space sample (solid circles with 1s errors: the extremal data bound the shaded area), and the linear spectrum

convolved with the window function (solid line). Here, the differences are caused by all of the factors listed in Section 3.1. The dashed lines in panels (b) and (c)

show the power spectrum expected from data in which the average over-density is artificially set to zero (see Section 3.2 for details). The 0:02 , k ,

0:15 h Mpc21 region fitted in Section 6.4 is delineated by the vertical dotted lines. In calculating the error in the average power spectra measured from the

simulations, we have assumed that the samples are independent. This is not precisely true, and the errors plotted therefore underestimate the true error.
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covariance matrix calculated from Gaussian realizations of linear

density fields, as described in Section 5. The best-fitting power

spectrum parameters are only weakly dependent on the model

power spectrum that was assumed in calculating the covariance

matrix: we have considered a number of input power spectra and

find x2
min close to the expected value for all of them. In fact, we

used an iterative procedure leading to this choice of covariance

matrix. Initially we adopted a Vm h ¼ 0:25, Vb/Vm ¼ 0 power

spectrum, and then adopted the values Vm h ¼ 0:2 and Vb/Vm ¼

0:16 which are close to the best-fitting values determined with this

covariance matrix.

The likelihood contours in Vb/Vm versus Vm h for this fit are

shown in Fig. 5. At each point in this surface, we have marginalized

by integrating the likelihood surface over the two free parameters,

h and the power spectrum amplitude. The result is not significantly

altered if the modal or maximum likelihood (ML) points in the

plane corresponding to power spectrum amplitude and h were

chosen instead. The likelihood function is also dependent on the

covariance matrix (which should be allowed to vary with

cosmology), although the consistency of the results from

covariance matrices calculated for different cosmologies shows

that this dependence is negligibly small. Thus L/expð2x 2/2Þ in

practice.

Fig. 5 shows that there is a degeneracy between Vm h and the

baryonic fraction Vb/Vm. However, there are two local maxima in

the likelihood, one with Vm h . 0:2 and ,20 per cent baryons,

plus a secondary solution Vm h . 0:6 and ,40 per cent baryons.

Assuming a uniform prior for h over a factor of 2 is arguably

over-cautious, and we have therefore multiplied by a Gaussian

prior h ¼ 0:7 ^ 10 per cent in Fig. 6. This corresponds to

multiplying by the likelihood from external constraints such as the

Hubble Space Telescope key project (Freedman et al. 2001). The

effect is to tighten the contours around the above two models. The

low-density model now becomes approximately

Vm h ¼ 0:20 ^ 0:03; Vb/Vm ¼ 0:15 ^ 0:07: ð6Þ

The errors quoted are rms errors, and have been calculated by

integrating over the branch of solutions of interest. Analysing

mock catalogues drawn from the LCDM Hubble volume

simulation produces similar rms errors, and shows that, for each

parameter, the interval defined by the appropriate error is close to a

68 per cent confidence interval (see Section 6.4).

The 2dFGRS data are compared to the best-fitting linear

power spectra convolved with the window function in Fig. 7.

This shows where the two branches of solutions come from: the

low-density model fits the overall shape of the spectrum with

relatively small ‘wiggles’, while the solution at Vm h . 0:6

provides a better fit to the bump at k . 0:065 h Mpc21, but fits the

overall shape less well.

6.3 Robustness of the fit

We have tried varying the range of k for the fit, the assumed power-

law index of the primordial fluctuations, and the assumed

geometry. The best-fitting Vm h and Vb/Vm for a variety of

assumptions are presented in Table 1 along with approximate

errors. h ¼ 0:7 ^ 10 per cent was assumed for this analysis. The

shape of the likelihood surfaces and the position of the minimum

recovered from each of these fits are similar, and the ML values

generally change by !1s. The main effect of changing

assumptions is in how rapidly the likelihood falls away from the

ML point.

Perhaps the main point to emphasize here is that the results are

not greatly sensitive to the assumed tilt of the primordial spectrum.

We have used the CMB results to motivate the choice of n ¼ 1, but

it is clear that very substantial tilts are required to alter our

conclusions significantly: n . 0:8 would be required for the zero-

baryon model to become an acceptable fit, within 1s of the

preferred model.

We have also fitted models to power spectra calculated from two

Figure 5. Likelihood surfaces for the best-fitting linear power spectrum

over the region 0:02 , k , 0:15 h Mpc21. The normalization is a free

parameter to account for the unknown large-scale biasing. Contours are

plotted at the usual positions for one-parameter confidence of 68 per cent,

and two-parameter confidence of 68, 95 and 99 per cent (i.e.

22 lnðL/LmaxÞ ¼ 1; 2:3; 6:0 and 9.2). We have marginalized over the

missing free parameters (h and the power spectrum amplitude) by

integrating under the likelihood surface.

Table 1. Maximum likelihood (ML) Vmh and Vb/Vm parameters for fits to
the 2dFGRS power spectrum, varying the range of k-space fitted, the power-
law index n of the primordial spectrum and the matter density of the flat
cosmology assumed to estimate the comoving distance to each galaxy. The
maximum likelihood Vmh and Vb/Vm parameters are also presented for fits
to the power spectra calculated from the NGP and SGP data subsets. For
these subsets, the 0:02 , k , 0:15 data were fitted assuming a scale-
invariant primordial spectrum and a flat Vm ¼ 0:3 cosmology to estimate
the comoving distance to each galaxy. All of these fits used covariance
matrices calculated from Gaussian realizations of a Vmh ¼ 0:2, Vb/Vm ¼
0:16 CDM power spectrum.

k (h Mpc21) n Assumed ML parameters
min. max. Vm for r(z ) Vmh Vb/Vm

0.02 0.15 1.0 1.0 0.23^ 0.03 0.18^ 0.07
0.02 0.15 1.0 0.4 0.20^ 0.03 0.16^ 0.07
0.02 0.15 0.9 0.3 0.22^ 0.03 0.12^ 0.07
0.02 0.15 1.1 0.3 0.18^ 0.03 0.19^ 0.07
0.015 0.15 1.0 0.3 0.20^ 0.03 0.14^ 0.07
0.03 0.15 1.0 0.3 0.20^ 0.03 0.15^ 0.07
0.02 0.10 1.0 0.3 0.17^ 0.04 0.18^ 0.08
0.02 0.12 1.0 0.3 0.18^ 0.03 0.17^ 0.07
0.02 0.15 1.0 0.3 0.20^ 0.03 0.15^ 0.07

NGP data subset 0.18^ 0.05 0.14^ 0.10
SGP data subset 0.22^ 0.04 0.13^ 0.08
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subsets of the data, the NGP and SGP excluding random fields. The

NGP subset contained 51 862 galaxies, and the SGP subset

contained 75 786 galaxies. The redshift-space window functions

for these subsets have more simple geometries than the complete

sample. Power spectra have been calculated for each subset, as

described in Section 3.1. The fit to the spherically averaged

window function and the covariance matrix were also revised for

each subset. Results of this analysis are presented in Table 1, and

show that the parameters deduced from either subset are consistent

with those derived from the complete sample.

6.4 Fitting to mock data

Using the technique described in Section 6.2, we have tried to

recover the input parameters of the LCDM simulation, Vm h ¼

0:21 and Vb/Vm ¼ 0:13, from 35 redshift-space galaxy catalogues

drawn from this simulation to mimic the 2dFGRS data. Having

calculated power spectra for the catalogues [presented in panel (c)

of Fig. 4], we have fitted the data with models using a covariance

matrix calculated as in Section 5. The ML (and secondary maxima

if present) Vm h and Vb/Vm parameters recovered from these

catalogues are presented in Fig. 8. There is a degeneracy between

recovered parameters: the data trace a pattern similar to that of

power spectra with similar shape in the region 0:02 , k ,

0:15 h Mpc21: This pattern is similar to that determined from the

2dFGRS data (Fig. 6). The degeneracy between Vm h and Vb/Vm

is weakly broken with the models favouring approximately the

correct baryon fraction. For each maximum within the region

0:1 , Vm h , 0:3 and 0:0 , Vb/Vm , 0:4, we have integrated

over the likelihood and find rms values similar to those obtained

from the 2dFGRS data. Of the 35 catalogues modelled, 27 (77 per

cent) have likelihood maxima within 1 rms of the true Vm h value

(i.e. they have likelihood maxima with 0:18 , Vm h , 0:24Þ. We

also find that 24 (69 per cent) have likelihood maxima within 1 rms

of the true baryon fraction (i.e. they have likelihood maxima with

0:06 , Vb/Vm , 0:20Þ. This gives us confidence that the quoted

errors for the best-fitting parameters derived from the 2dFGRS data

are sound.

Combining the likelihood surfaces calculated from the 13 non-

overlapping catalogues results in best-fitting parameters Vm h ¼

0:20 ^ 0:15 and Vb/Vm ¼ 0:10 ^ 0:05, with 22 lnðLtrue/LmaxÞ ,

1:0 for the combined likelihood. This offset is statistically

acceptable, and suggests that, if there is a systematic bias in

determining Vm h and Vb/Vm from these catalogues, it is at a level

well below the errors on the recovered parameters from any single

catalogue.

7 C O N C L U S I O N S

We have shown that the present 2dFGRS data allow the galaxy

power spectrum to be measured to high accuracy ð10–15 per cent

rms) over about a decade in scale at k , 0:15 h Mpc21. We have

carried out a range of tests for systematics in the analysis and a

detailed comparison with realistic mock samples. As a result, we

are confident that the 2dFGRS result can be interpreted as giving

the shape of the linear-theory matter power spectrum on these large

scales, and that the statistical errors and covariances between the

data points are known.

By fitting our results to the space of CDM models, we have been

able to reach a number of interesting conclusions regarding the

matter content of the universe:

(i) The power spectrum is close in shape to that of a Vm h ¼ 0:2

model, to a tolerance of about 20 per cent.

(ii) Nevertheless, there is sufficient structure in the P(k) data that

the degeneracy between Vb/Vm and Vm h is weakly broken. The

Figure 7. The 2dFGRS data compared with the two preferred models from

the maximum likelihood fits convolved with the window function (solid

lines). Error bars show the diagonal elements of the covariance matrix, for

the fitted data that lie between the dotted vertical lines. The unconvolved

models are also shown (dashed lines). The Vm h . 0:6, Vb/Vm ¼ 0:42,

h ¼ 0:7 model has the higher bump at k . 0:05 h Mpc21. The smoother

Vmh . 0:20, Vb/Vm ¼ 0:15, h ¼ 0:7 model is a good fit to the data

because of the overall shape.

Figure 6. Likelihood surfaces for the best-fitting linear power spectrum

over the region 0:02 , k , 0:15 h Mpc21, as in Fig. 5, but now adding a

prior on h: h ¼ 0:7 ^ 10 per cent. This tightens the constraints. This result

is compared to estimates from X-ray cluster analysis (Evrard 1997), big-

bang nucleosynthesis (O’Meara et al. 2001) and recent CMB results

(Netterfield et al. 2001; Pryke et al. 2001). Note that we have plotted the

CMB result following the reasonable approximation that Vb h 2 and

Vcdm h 2 were independently determined by each of these analyses.
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two local likelihood maxima have ðVm h;Vb/VmÞ . ð0:2; 0:15Þ

and (0.6,0.4) respectively.

(iii) The evidence for detection of baryon oscillations in the

power spectrum is presently modest, with a likelihood ratio of

approximately 2.7 between the favoured model and the best zero-

baryon model. Conversely, a large baryon fraction can be very

strongly excluded: Vb/Vm , 0:28 at 95 per cent confidence,

provided Vm h , 0:4.

(iv) These conclusions do not depend strongly on the value of h,

although they do depend on the tilt of the primordial spectrum,

with n . 0:8 being required to make a zero-baryon model an

acceptable fit to the data.

(v) The sensitivity to tilt emphasizes that the baryon signal

comes in good part from the overall shape of the spectrum.

Although the eye is struck by a single sharp ‘spike’ at

k . 0:065 h Mpc21, the correlated nature of the errors in the P(k)

estimate means that such features tend not to be significant in

isolation. We note that the convolving effects of the window

would require a very substantial spike in the true power in order

to match our data exactly. Such over-fitting is not possible within

the compass of conventional models, and the conservative

conclusion is that the apparent spike is probably enhanced by

correlated noise. A proper statistical treatment is essential in

such cases.

It is interesting to compare these conclusions with other

constraints. Averaging the results of Netterfield et al. 2001

and Pryke et al. (2001), the current CMB data require

Vm h 2 ¼ 0:15 ^ 0:03; Vb h 2 ¼ 0:0215 ^ 0:0025, together with

a power-spectrum index of n ¼ 0:97 ^ 0:06, on the assump-

tion of pure scalar fluctuations. If we take h ¼ 0:7 ^ 10 per

cent, this gives

Vm h ¼ 0:21 ^ 0:05; Vb/Vm ¼ 0:14 ^ 0:03; ð7Þ

in remarkably good agreement with the estimate from the

2dFGRS;

Vm h ¼ 0:20 ^ 0:03; Vb/Vm ¼ 0:15 ^ 0:07: ð8Þ

Latest estimates of the deuterium-to-hydrogen ratio in quasar

spectra combined with big-bang nucleosynthesis theory predict

Vb h 2 ¼ 0:0205 ^ 0:0018 (O’Meara et al. 2001), in agreement

with the latest CMB results. The confidence interval estimated

from the 2dFGRS power spectrum overlaps both regions. X-ray

cluster analysis predicts a baryon fraction Vb/Vm ¼ 0:127 ^

0:017 (Evrard 1997) which is again within 1s of our preferred

value.

The above limits are all shown on Fig. 6, and paint a picture of

impressive consistency: it appears that we live in a universe that

has Vm . 0:3 with a baryon fraction of approximately 15 per cent.

The precision of this statement will improve greatly with

completion of the 2dFGRS. Doubling the sample size will improve

the errors on the baryon fraction by much more than ,
ffiffiffi
2
p

. The

window function will be more compact, so the signatures of baryon

oscillations should be seen very clearly – or we will see that some

non-standard alternative is required.
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