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Abstract. The 2dF Galaxy Redshift Survey is the first to observe more than 100,000 redshifts,
making possible precise measurements of many aspects of galaxy clustering. The spatial distribution
of galaxies can be studied as a function of galaxy spectral type, and also of broad-band colour.
Redshift-space distortions are detected with a high degreeof significance, confirming the detailed
Kaiser distortion from large-scale infall velocities, andmeasuring the distortion parameterβ ≡
Ω0.6

m /b = 0.49±0.09. The power spectrum is measured to<
∼ 10% accuracy fork > 0.02hMpc−1,

and is well fitted by a CDM model withΩmh = 0.18±0.02 and a baryon fraction of 0.17±0.06.
A joint analysis with CMB data requiresΩm = 0.31±0.05 andh = 0.67±0.04, assuming scalar
fluctuations. The fluctuation amplitude from the CMB isσ8 = 0.76±0.04, assuming reionization at
z <
∼ 10, so that the general level of galaxy clustering is approximately unbiased, in agreement with

an internal bispectrum analysis. Luminosity dependence ofclustering is however detected at high
significance, and is well described by a relative bias ofb/b∗ = 0.85+0.15(L/L∗). This is consistent
with the observation thatL∗ in rich clusters is brighter than the global value by 0.28±0.08 mag.

1. AIMS AND DESIGN OF THE 2DFGRS

The 2dF Galaxy Redshift Survey (2dFGRS) was designed to study the following key
aspects of the large-scale structure in the galaxy distribution:
(1) To measure the galaxy power spectrumP(k) on scales up to a few hundred Mpc,

bridging the gap between the scales of nonlinear structure and measurements from
the the cosmic microwave background (CMB).

(2) To measure the redshift-space distortion of the large-scale clustering that results
from the peculiar velocity field produced by the mass distribution.

(3) To measure higher-order clustering statistics in orderto understand biased galaxy
formation, and to test whether the galaxy distribution on large scales is a Gaussian
random field.
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The survey is designed around the 2dF multi-fibre spectrograph on the Anglo-Australian
Telescope, which is capable of observing up to 400 objects simultaneously over a
2 degree diameter field of view. For details of the instrumentand its performance see
http://www.aao.gov.au/2df/, and also Lewis et al. (2002).

The source catalogue for the survey is a revised and extendedversion of the APM
galaxy catalogue (Maddox et al. 1990a,b,c); this includes over 5 million galaxies down
to bJ = 20.5 in both north and south Galactic hemispheres over a region of almost
104deg2 (bounded approximately by declinationδ ≤+3◦ and Galactic latitudeb >

∼ 20◦).
This catalogue is based on Automated Plate Measuring machine (APM) scans of 390
plates from the UK Schmidt Telescope (UKST) Southern Sky Survey. ThebJ magnitude
system for the Southern Sky Survey is defined by the response of Kodak IIIaJ emulsion
in combination with a GG395 filter, and is related to the Johnson–Cousins system by
bJ = B−0.304(B−V ), where the colour term is estimated from comparison with the
SDSS Early Data Release (Stoughton et al. 2002) The photometry of the catalogue
is calibrated with numerous CCD sequences and has a precision of approximately
0.15 mag for galaxies withbJ = 17–19.5. The star-galaxy separation is as described
in Maddox et al. (1990b), supplemented by visual validationof each galaxy image.

FIGURE 1. The 2dFGRS fields (small circles) superimposed on the APM catalogue area (dotted
outlines of Sky Survey plates). There are approximately 140,000 galaxies in the 75◦×15◦ southern strip
centred on the SGP, 70,000 galaxies in the 75◦× 7.5◦ equatorial strip, and 40,000 galaxies in the 100
randomly-distributed 2dF fields covering the whole area of the APM catalogue in the south.

The survey geometry is shown in Figure 1, and consists of two contiguous declination
strips, plus 100 random 2-degree fields. One strip is in the southern Galactic hemisphere
and covers approximately 75◦×15◦ centred close to the SGP at (α,δ )=(01h,−30◦);
the other strip is in the northern Galactic hemisphere and covers 75◦ × 7.5◦ centred
at (α,δ )=(12.5h,+0◦). The 100 random fields are spread uniformly over the 7000 deg2

region of the APM catalogue in the southern Galactic hemisphere. At the median redshift
of the survey (¯z = 0.11), 100h−1Mpc subtends about 20 degrees, so the two strips are
375h−1Mpc long and have widths of 75h−1Mpc (south) and 37.5h−1Mpc (north).

The sample is limited to be brighter than an extinction-corrected magnitude ofbJ =
19.45 (using the extinction maps of Schlegel et al. 1998). This limit gives a good match
between the density on the sky of galaxies and 2dF fibres. Due to clustering, however,
the number in a given field varies considerably. To make efficient use of 2dF, we employ

http://www.aao.gov.au/2df/


an adaptive tiling algorithm to cover the survey area with the minimum number of 2dF
fields. With this algorithm we are able to achieve a 93% sampling rate with on average
fewer than 5% wasted fibres per field. Over the whole area of thesurvey there are in
excess of 250,000 galaxies.

2. SURVEY STATUS

After an extensive period of commissioning of the 2dF instrument, 2dFGRS observing
began in earnest in May 1997, and terminated in April 2002. Intotal, observations
were made of 899 fields, yielding redshifts and identifications for 232,529 galaxies,
13976 stars and 172 QSOs, at an overall completeness of 93%. The galaxy redshifts are
assigned a quality flag from 1 to 5, where the probability of error is highest at lowQ.
Most analyses are restricted toQ ≥ 3 galaxies, of which there are currently 221,496.
An interim data release took place in July 2001, consisting of approximately 100,000
galaxies (see Colless et al. 2001 for details). A public release of the full photometric and
spectroscopic database is scheduled for July 2003.

The Colless et al. (2001) paper details the practical steps that are necessary in order
to work with a survey of this sort. The 2dFGRS does not consistof a simple region
sampled with 100% efficiency, and it is therefore necessary to use a number of masks
in order to interpret the data. Two of these concern the inputcatalogue: the boundaries
of this catalogue, including ‘drilled’ regions around bright stars where galaxies could
not be detected; also, revisions to the photometric calibration mean that in practice
the survey depth varies slightly with position on the sky. A futher mask arises from
the way in which the sky is tessellated into 2dF tiles: near the survey edges and near
internal holes, a lack of overlaps mean that the sampling fraction falls to about 50%.
Finally, the spectroscopic success rate of each spectroscopic observation fluctuated
according to the observing conditions. The median redshiftyield was approximately
95%, but with a tail towards poorer data. The terminal stagesof 2dFGRS observing
were in fact devoted to re-observing these fields of low completeness; nevertheless,
approximately 10% of fields have completeness lower than 80%. This variable sampling
makes quantification of the large scale structure more difficult, particularly for any
analysis requiring relatively uniform contiguous areas. However, the effective survey
‘mask’ can be measured precisely enough that it can be allowed for in analyses of the
galaxy distribution.

3. GALAXY SPECTRA AND COLOURS

Beyond the basic data of positions, magnitudes and redshifts, it is important on physical
grounds to be able to divide the 2dFGRS database into different categories of galaxies.
This has been done in two different ways. Spectral classification of 2dFGRS galaxies
was performed by Folkes et al. (1999) and Madgwick et al. (2002). Principal component
analysis was used to split galaxies into a superposition of asmall number of templates.
Not all of these are robust, owing to uncalibrated spectral distortions in the 2dF instru-



ment, but it was possible to derive a robust classification parameter (termedη) from the
templates, which effectively measures the emission-line strength (closely related to the
star-formation rate). Galaxies were divided into four spectral classes; their mean spectra
and separate luminosity functions are shown in Figure 2.

FIGURE 2. The type-dependent galaxy luminosity function according to Madgwick et al. (2002).
Principal component analysis was used to split galaxies into a superposition of a small number of
templates, and a categorization made based on the decomposition. Type 1 galaxies are generally E/S0,
while later types range from Sa to Irr.

This classification method has the drawback that it cannot beused beyondz = 0.15,
where Hα is lost from the spectra. Also, the fibres do not cover the whole galaxy
(although Madgwick et al. 2002 show that aperture corrections are not large in practice).
More recently, we have been able to obtain total broad-band colours for the 2dFGRS
galaxies, using the data from the SuperCOSMOS sky surveys (Hambly et al. 2001).
These yieldBJ from the same UK Schmidt Plates as used in the original APM survey,
but with improved linearity and smaller random errors (0.09mag rms relative to the
SDSS EDR data). TheRF plates are of similar quality, so that we are able to divide
galaxies by colour, with an rms in photographicB−R of about 0.13 mag. The systematic
calibration uncertainties are negligible by comparison, and are at the level of 0.04 mag.
rms in each band. Figure 3 shows that the colour information divides ‘passive’ galaxies
with little active star formation cleanly from the remainder, uniformly over the whole
redshift range of the 2dFGRS.

As an immediate application, we can display the spatial distribution of 2dFGRS
galaxies divided according to colour (Figure 4). The most striking aspect of this image is
how closely both sets of galaxies follow the same structure.The passive subset display a
more skeletal appearance, as expected owing to morphological segregation of ellipticals.
A red-selected survey such as SDSS will appear more similar to the passive subset of
the 2dFGRS, with relatively low sampling of the more active spectral type 2–4.



FIGURE 3. PhotographicB − R colour versus redshift for the 2dFGRS. The separation between
‘passive’ (red) and ‘active’ (blue) galaxies is very clear.Empirically, B−R− 2.8z defines a ‘restframe’
colour whose distribution is independent of redshift, and very clearly bimodal. This is strongly reminiscent
of the distribution of the spectral type,η , and we assume that a division at(B−R)0 = 0.85 achieves a
separation of ‘class 1’ galaxies from classes 2–4, as was done using spectra by Madgwick et al. (2002).

4. REDSHIFT-SPACE CORRELATIONS

The simplest statistic for studying clustering in the galaxy distribution is the the two-
point correlation function,ξ (σ ,π). This measures the excess probability over random
of finding a pair of galaxies with a separation in the plane of the skyσ and a line-of-
sight separationπ . Because the radial separation in redshift space includes the peculiar
velocity as well as the spatial separation,ξ (σ ,π) will be anisotropic. On small scales the
correlation function is extended in the radial direction due to the large peculiar velocities
in non-linear structures such as groups and clusters – this is the well-known ‘Finger-of-
God’ effect. On large scales it is compressed in the radial direction due to the coherent
infall of galaxies onto mass concentrations – the Kaiser effect (Kaiser 1987).

To estimateξ (σ ,π) we compare the observed count of galaxy pairs with the count
estimated from a random distribution following the same selection function both on the
sky and in redshift as the observed galaxies. We apply optimal weighting to minimise the
uncertainties due to cosmic variance and Poisson noise. Theredshift-space correlation
function for the 2dFGRS computed in this way is shown in Figure 5. The correlation-
function results display very clearly two signatures of redshift-space distortions. The
‘fingers of God’ from small-scale random velocities are veryclear, as indeed has been
the case from the first redshift surveys (e.g. Davis & Peebles1983). However, this is
the first time that the large-scale flattening from coherent infall has been seen in detail.
An initial analysis of this effect was performed in Peacock et al. (2001), and the final
database was analysed by Hawkins et al. (2002).

The degree of large-scale flattening is determined by the total mass density parame-
ter, Ωm, and the biasing of the galaxy distribution. On large scales, it should be correct
to assume a linear bias model, with correlation functionsξg(r) = b2ξ (r), so that the
redshift-space distortion on large scales depends on the combinationβ ≡ Ω0.6

m /b. This is
modified by the Finger-of-God effect, which is significant even at large scales and dom-



FIGURE 4. The distribution of galaxies in part of the 2dFGRS, drawn from a total of 221,496 galaxies:
slices 4◦ thick, centred at declination−2.5◦ in the NGP and−27.5◦ in the SGP. The survey is divided at a
rest-frame colour of photographicB−R = 0.85, into galaxies with and without active star formation. The
This image reveals a wealth of detail, including linear supercluster features, often nearly perpendicular to
the line of sight. It appears that these transverse featureshave been enhanced by infall velocities.

inant at small scales. The effect can be modelled by introducing a parameterσp, which
represents the rms pairwise velocity dispersion of the galaxies in collapsed structures,
σp (see e.g. Ballinger et al. 1996). Considering both these effects, and marginalising
overσp, the best estimate ofβ and its 68% confidence interval according to Hawkins et



FIGURE 5. The galaxy correlation functionξ (σ ,π) as a function of transverse (σ ) and radial (π) pair
separation is shown as a greyscale image. It was computed in 0.2h−1Mpc boxes and then smoothed with a
Gaussian having an rms of 0.5h−1Mpc. The contours are for a model withβ = 0.4 andσp = 400kms−1,
and are plotted atξ = 10, 5, 2, 1, 0.5, 0.2 and 0.1.

al. (2002) is

β = 0.49±0.09 (1)

The quoted error is slightly larger than in Peacock et al. (2001): mainly, this reflects
the decision of Hawkins et al. to concentrate on the better sampled volume atz < 0.2,
although a more detailed comparison with mock data also indicates that the previous
errors were too small by a factor of about 1.2.

Our measurement ofΩ0.6/b can only be used to determineΩ if the bias is known. We
discuss below two methods by which the bias parameter may be inferred, which in fact
favour a low degree of bias. Nevertheless, there are other uncertainties in converting a
measurement ofβ to a figure forΩ. The 2dFGRS has a median redshift of 0.11; with
weighting, the mean redshift in Hawkins et al. is 0.15, and our measurement should
be interpreted asβ at that epoch. The optimal weighting also means that our mean
luminosity is high: it is approximately 1.4 times the characteristic luminosity,L∗, of the
overall galaxy population (Folkes et al. 1999; Madgwick et al. 2002). This means that
we need to quantify the luminosity dependence of clustering.

5. REAL-SPACE CLUSTERING AND ITS DEPENDENCE ON
LUMINOSITY

The dependence of galaxy clustering on luminosity is an effect that was controversial
for a number of years. Using the APM-Stromlo redshift survey, Loveday et al. (1995)
claimed that there was no trend of clustering amplitude withluminosity, except possi-
bly at the very lowest luminosities. In contradiction, the SSRS study of Benoist et al.



(1996) suggested that the strength of galaxy clustering increased monotonically with lu-
minosity, with a particularly marked effect for galaxies aboveL∗. The latter result was
arguably more plausible, based on what we know of luminosityfunctions and morpho-
logical segregation. It has been clear for many years that elliptical galaxies display a
higher correlation amplitude than spirals (Davis & Geller 1976). Since ellipticals are
also more luminous on average, as shown above, some trend with luminosity is to be
expected, but the challenge is to detect it.

FIGURE 6. (a) The correlation length in real space as a function of absolute magnitude. The solid
line shows the predictions of the semi-analytic model of Benson et al. (2001), computed in a series of
overlapping bins, each 0.5 magnitudes wide. The dotted curves show an estimate of the errors on this
prediction, including the relevant sample variance for thesurvey volume. (b) The real space correlation
length estimated combining the NGP and SGP (filled circles).The open symbols show a selection of
recent data from other studies.

The difficulty with measuring the dependence ofξ (r) on luminosity is that cosmic
variance can mask the signal of interest. It is therefore important to analyse volume-
limited samples in which galaxies of different luminosities are compared in the same
volume of space. This comparison was undertaken by Norberg et al. (2001), who mea-
sured real-space correlation functions via the projectionΞ(σ) =

∫
ξ (σ ,π) dπ , demon-

strating that it was possible to obtain consistent results in both NGP and SGP. A very
clear detection of luminosity-dependent clustering was achieved, as shown in Figure 6.
The results can be described by a linear dependence of effective bias parameter on lu-
minosity:

b/b∗ = 0.85+0.15(L/L∗), (2)

and the scale-length of the real-space correlation function for L∗ galaxies is approx-
imately r0 = 4.8h−1Mpc. This trend is in qualitative agreement with the resultsof
Benoist et al. (1996), but in fact these workers gave a stronger dependence on lumi-
nosity than is indicated by the 2dFGRS. Finally, with spectral classifications, it is pos-
sible to measure the dependence of clustering both on luminosity and on spectral type,
to see to what extent morphological segregation is responsible for this result. Norberg



et al. (2002) show that, in fact, the principal effect seems to be with luminosity:ξ (r)
increases withL for all spectral types. This is reasonable from a theoretical point of
view, in which the principal cause of different clustering amplitudes is the mass of halo
that hosts a galaxy (e.g. Cole & Kaiser 1989; Mo & White 1996; Kauffman, Nusser &
Steinmetz 1997).

Finally, these results would lead us to infer that the LF mustchange in strongly
clumped regions, shifting to higher luminosities. Such an effect has been sought for
many years, but always yielded null results. However, De Propris et al. (2002) have
shown thatL∗ in rich clusters does obey a shift with respect to the global value, being
brighter by 0.28±0.08 mag.

6. THE 2DFGRS POWER SPECTRUM

Perhaps the key aim of the 2dFGRS was to perform an accurate measurement of the 3D
clustering power spectrum, in order to improve on the APM result, which was deduced
by deprojection of angular clustering (Baugh & Efstathiou 1993, 1994). The results of
this direct estimation of the 3D power spectrum are shown in Figure 7. This power-
spectrum estimate uses the FFT-based approach of Feldman, Kaiser & Peacock (1994),
and needs to be interpreted with care. Firstly, it is a raw redshift-space estimate, so
that the power beyondk ' 0.2hMpc−1 is severely damped by fingers of God. On large
scales, the power is enhanced, both by the Kaiser effect and by the luminosity-dependent
clustering discussed above. Finally, the FKP estimator yields the true power convolved
with the window function. This modifies the power significantly on large scales (roughly
a 20% correction). We have made an approximate correction for this in Figure 7. The
precision of the power measurement appears to be encouragingly high, and the next task
is to perform a detailed fit of physical power spectra, takingfull account of the window
effects. We summarize here results from this analysis (Percival et al. 2001).

The fundamental assumption is that, on large scales, linearbiasing applies, so that
the nonlinear galaxy power spectrum in redshift space has a shape identical to that ow
linear theory in real space. We believe that this assumptionis valid fork < 0.15hMpc−1;
the detailed justification comes from analyzing realistic mock data derived fromN-body
simulations (Cole et al 1998). The model free parameters arethus the primordial spectral
index,n, the Hubble parameter,h, the total matter density,Ωm, and the baryon fraction,
Ωb/Ωm. Note that the vacuum energy does not enter. Initially, we show results assuming
n = 1; this assumption is relaxed later.

In order to compare the 2dFGRS power spectrum to members of the CDM family of
theoretical models, it is essential to have a proper understanding of the full covariance
matrix of the data: the convolving effect of the window function causes the power at
adjacentk values to be correlated. This covariance matrix was estimated by applying
the survey window to a library of Gaussian realisations of linear density fields. Similar
results were obtained using a covariance matrix estimated from a set of mock catalogues.
It is now possible to explore the space of CDM models, and likelihood contours in
Ωb/Ωm versusΩmh are shown in Figure 8. At each point in this surface we have
marginalized by integrating the likelihood surface over the two free parameters,h and



FIGURE 7. The 2dFGRS redshift-space dimensionless power spectrum,∆2(k), estimated according
to the FKP procedure. The solid points with error bars show the power estimate. The window function
correlates the results at differentk values, and also distorts the large-scale shape of the powerspectrum
An approximate correction for the latter effect has been applied. The solid and dashed lines show
various CDM models, all assumingn = 1. For the case with non-negligible baryon content, a big-bang
nucleosynthesis value ofΩbh2 = 0.02 is assumed, together withh = 0.7. A good fit is clearly obtained
for Ωmh ' 0.2. Note that the observed power at largek will be boosted by nonlinear effects, but damped
by small-scale random peculiar velocities. It appears thatthese two effects very nearly cancel, but model
fitting is generally performed only atk < 0.15hMpc−1 in order to avoid these complications.

the power spectrum amplitude. Assuming a uniform prior forh over a factor of 2 is
arguably over-cautious, and we have therefore added a Gaussian prior h = 0.7±10%.
This corresponds to multiplying by the likelihood from external constraints such as the
HST key project (Freedman et al. 2001); this has only a minor effect on the results.

Figure 8 shows that there is a degeneracy betweenΩmh and the baryonic fraction
Ωb/Ωm. However, there are two local maxima in the likelihood, one with Ωmh ' 0.2
and∼ 20% baryons, plus a secondary solutionΩmh ' 0.6 and∼ 40% baryons. The
high-density model can be rejected through a variety of arguments, and the preferred
solution is

Ωmh = 0.20±0.03; Ωb/Ωm = 0.15±0.07. (3)

The 2dFGRS data are compared to the best-fit linear power spectra convolved with
the window function in Figure 8. This shows where the two branches of solutions
come from: the low-density model fits the overall shape of thespectrum with relatively
small ‘wiggles’, while the solution atΩmh ' 0.6 provides a better fit to the bump at
k ' 0.065hMpc−1, but fits the overall shape less well. A preliminary analysisof P(k)
from the full final dataset shows thatP(k) becomes smoother: the high-baryon solution
becomes disfavoured, and the uncertainties narrow slightly around the lower-density
solution:Ωmh = 0.18±0.02;Ωb/Ωm = 0.17±0.06.

It is interesting to compare these conclusions with other constraints. These are shown
on Figure 8, assumingh = 0.7±10%. Latest estimates of the Deuterium to Hydrogen



FIGURE 8. Likelihood contours for the best-fit linear power spectrum over the region 0.02< k < 0.15.
The normalization is a free parameter to account for the unknown large scale biasing. Contours are plotted
at the usual positions for one-parameter confidence of 68%, and two-parameter confidence of 68%, 95%
and 99% (i.e.−2ln(L /Lmax) = 1,2.3,6.0,9.2). We have marginalized over the missing free parameters
(h and the power spectrum amplitude). A prior onh of h = 0.7± 10% was assumed. This result is
compared to estimates from X-ray cluster analysis (Evrard 1997), big-bang nucleosynthesis (Burles et
al. 2001) and CMB results (Netterfield et al. 2001; Pryke et al. 2002). The CMB results assume thatΩbh2

andΩcdmh2 were independently determined from the data. The second panel shows the 2dFGRS data
compared with the two preferred models from the Maximum Likelihood fits convolved with the window
function (solid lines). Error bars show the diagonal elements of the covariance matrix, for the fitted data
that lie between the dotted vertical lines. The unconvolvedmodels are also shown (dashed lines). The
Ωmh ' 0.6, Ωb/Ωm = 0.42, h = 0.7 model has the higher bump atk ' 0.05hMpc−1. The smoother
Ωmh ' 0.20, Ωb/Ωm = 0.15, h = 0.7 model is a better fit to the data because of the overall shape.A
preliminary analysis of the complete final 2dFGRS sample yields a slightly smoother spectrum than the
results shown here (from Percival et al. 2001), so that the high-baryon solution becomes disfavoured.

ratio in QSO spectra combined with big-bang nucleosynthesis theory predictΩbh2 =
0.020±0.001 (Burles et al. 2001), which translates to the shown locusof fB vs Ωmh.
X-ray cluster analysis predicts a baryon fractionΩb/Ωm = 0.127±0.017 (Evrard 1997)
which is within 1σ of our value. These loci intersect very close to our preferred model.
Moreover, these results are in good agreement with independent estimates of the total
density and baryon content from data on CMB anisotropies (e.g. Netterfield et al. 2001;
Pryke et al. 2002).

Perhaps the main point to emphasise here is that the 2dFGRS results are not greatly
sensitive to the assumed tilt of the primordial spectrum. Wehave used CMB results to
motivate the choice ofn = 1, as discussed below, but it is clear that very substantial tilts
are required to alter the conclusions significantly:n ' 0.8 would be required to turn zero
baryons into the preferred model.

The main residual worry about accepting the above conclusions is probably whether
the assumption of linear bias can really be valid. In general, concentration towards
higher-density regions both raises the amplitude of clustering, but also steepens the
correlations, so that bias is largest on small scales. One way in which this issue can
be studied is to use the split by colour introduced above. Figure 9 shows the power
spectra for the 2dFGRS divided in this way. The shapes are almost identical (perhaps
not so surprising, since the cosmic variance effects are closely correlated in these co-



spatial samples). However, what is impressive is that the relative bias is almost precisely
independent of scale, even though the passive subset is rather strongly biased relative to
the active subset (relativeb ' 1.4). This provides some reassurance that the large-scale
P(k) reflects the underlying properties of the dark matter, rather than depending on the
particular class of galaxies used to measure it.

FIGURE 9. The power spectra of passive galaxies (filled circles) and active galaxies (open circles).
The shapes are strikingly similar. The square root of the ratio yields the right-hand panel: the relative bias
in redshift space of passive and active galaxies. The error bars are obtained by a jack-knife analysis. The
relative bias is consistent with a constant value of 1.4 overthe range used for fitting of the power-spectrum
data (0.015< k < 0.15hMpc−1).

7. COMBINATION WITH THE CMB AND COSMOLOGICAL
PARAMETERS

The 2dFGRS power spectrum contains important information about the key parameters
of the cosmological model, but we have seen that additional assumptions are needed,
in particular the values ofn andh. Observations of CMB anisotropies can in principle
measure most of the cosmological parameters, and combination with the 2dFGRS can
lift most of the degeneracies inherent in the CMB-only analysis. It is therefore of interest
to see what emerges from a joint analysis.

These issues are discussed in Efstathiou et al. (2002). The CMB data alone contain
two important degeneracies: the ‘geometrical’ and ‘tensor’ degeneracies. In the former
case, one can evade the commonly-stated CMB conclusion thatthe universe is flat, by
adjusting bothΛ andh to extreme values. In the latter case, a model with a large tensor
component can be made to resemble a zero-tensor model with large blue tilt (n > 1) and
high baryon content. Efstathiou et al. (2002) show that adding the 2dFGRS data removes
the first degeneracy, but not the second. This is reasonable:if we take the view that the
CMB determines the physical densityΩmh2, then a measurement ofΩmh from 2dFGRS
gives bothΩm andh separately in principle, removing one of the degrees of freedom
on which the geometrical degeneracy depends. On the other hand, the 2dFGRS alone
constrains the baryon content weakly, so this does not remove the scope for the tensor
degeneracy.



On the basis of this analysis, we can therefore be confident that the universe is very
nearly flat (|Ω−1| < 0.05), so it is defensible to assume hereafter that this is exactly
true. The importance of tensors will of course be one of the key questions for cosmology
over the next several years, but it is interesting to consider the limit in which these are
negligible. In this case, the standard model for structure formation contains a vector of
only 6 parameters:

p = (ns,Ωm,Ωb,h,Q,τ). (4)

Of these, the optical depth to last scattering,τ, is almost entirely degenerate with the
normalization,Q – and indeed with the bias parameter; we discuss this below. The
remaining four parameters are pinned down very precisely: using the latest CMB data
plus the 2dFRGS power spectrum, we obtain

(ns,Ωch2,Ωbh2,h) = (0.963±0.042,0.115±0.009,0.021±0.002,0.665±0.047), (5)

or an overall density parameter ofΩm = 0.31±0.05.
It is remarkable how well these figures agree with completelyindependent determi-

nations:h = 0.72±0.08 from the HST key project (Mould et al. 2000; Freedman et al.
2001);Ωbh2 = 0.020±0.001 (Burles et al. 2001). This gives confidence that the ten-
sor component must indeed be sub-dominant. For further details of this analysis, see
Percival et al. (2002).

8. MATTER FLUCTUATION AMPLITUDE AND BIAS

The above conclusions were obtained by considering the shapes of the CMB and galaxy
power spectra. However, it is also of great interest to consider the amplitude of mass
fluctuations, since a comparison with the galaxy power spectrum allows us to infer
the degree of bias directly. This analysis was performed by Lahav et al. (2002). Given
assumed values for the cosmological parameters, the present-day linear normalization
of the mass spectrum (e.g.σ8) can be inferred. It is convenient to define a corresponding
measure for the galaxies,σ8g, such that we can express the bias parameter as

b =
σ8g

σ8m
. (6)

In practice, we defineσ8g to be the value required to fit a CDM model to the power-
spectrum data on linear scales (0.02< k < 0.15hMpc−1). A final necessary complica-
tion of the notation is that we need to distinguish between the apparent values ofσ8g as
measured in redshift space (σ S

8g) and the real-space value that would be measured in the
absence of redshift-space distortions (σ R

8g). It is the latter value that is required in order
to estimate the bias.

A model grid covering the range 0.1< Ωmh < 0.3, 0.0< Ωb/Ωm < 0.4, 0.4< h < 0.9
and 0.75< σ S

8g < 1.14 was considered. The primordial index was assumed to ben = 1
initially, and the dependence onn studied separately. For fixed ‘concordance model’
parametersn = 1, k = 0, Ωm = 0.3, Ωbh2 = 0.02 and a Hubble constanth = 0.70,



we find that the amplitude of 2dFGRS galaxies in redshift space is σ S
8g(Ls,zs) = 0.94.

Correcting for redshift-space distortions as detailed above reduces this to 0.86 in real
space. Applying a correction for a mean luminosity of 1.9L∗ using the recipe of Norberg
et al. (2001), we obtain an estimate ofσ R

8g(L
∗,zs) = 0.76, with a negligibly small random

error. In order to obtain present-day bias figures, we need toknow the evolution of galaxy
clustering toz = 0. Existing data on clustering evolution reveals very slow changes:
higher bias at early times largely cancels the evolution of the dark matter. We therefore
assume no evolution inσ8g.

The value ofσ8 for the dark matter can be deduced from the CMB fits:

σ8 = (0.72±0.04) expτ, (7)

where the error bar includes both data errors and theory uncertainty. The unsatisfactory
feature is the degeneracy with the optical depth to last scattering. For reionization at
redshift 8, we would haveτ ' 0.05; it is unlikely thatτ can be hugely larger (e.g. Loeb
& Barkana 2001). Although direct removal of this theoretical prejudice is desirable (and
will be possible with future CMB data), it seems reasonable to assume that the true
value ofσ8 must be very close to 0.76. Within the errors, this agrees perfectly with our
σ R

8g(L
∗,0) = 0.76, implying thatL∗ galaxies are very nearly exactly unbiased. As we

have seen, there are large variations in the clustering amplitude with type, so that this
outcome must be something of a coincidence.

Finally, this conclusion of near-unity bias was reinforcedin a completely independent
way, by using the measurements of the bispectrum of galaxiesin the 2dFGRS (Verde
et al. 2002). As it is based on three-point correlations, this statistic is sensitive to
the filamentary nature of the galaxy distribution – which is asignature of nonlinear
evolution. One can therefore split the degeneracy between the amplitude of dark-matter
fluctuations and the amount of bias. At the effective redshift and luminosity of their
sample (zs = 0.17 andL = 1.9L∗), Verde et al. foundb = 1.04± 0.11. Although the
corrections to zero redshift and to luminosityL∗ are probably significant, this reinforces
the point that on large scales there is no substantial difference in clustering between
typical galaxies and the dark matter (small scales, of course, are another matter entirely).

9. CONCLUSIONS

The 2dFGRS is the first 3D survey of the local universe to achieve 100,000 red-
shifts, almost an order of magnitude improvement on previous work. The fi-
nal database should yield definitive results on a number of key issues relat-
ing to galaxy clustering. For details of the current status of the 2dFGRS, see
http://www.mso.anu.edu.au/2dFGRS. In particular, this site gives details
of the 2dFGRS public release policy, in which approximatelythe first half of the survey
data were made available in June 2001, with the complete survey database to be made
public by mid-2003. Some key results of the survey to date maybe summarized as
follows:
(1) The galaxy luminosity function has been measured precisely as a function of spec-

tral type (Folkes et al. 1999; Madgwick et al. 2002).

http://www.mso.anu.edu.au/2dFGRS


(2) The amplitude of galaxy clustering has been shown to depend on luminosity (Nor-
berg et al. 2001). The relative bias isb/b∗ = 0.85+0.15(L/L∗).

(3) The redshift-space correlation function has been measured out to 30h−1Mpc.
Redshift-space distortions implyβ ≡ Ω0.6

m /b = 0.49± 0.09, for galaxies with
L ' 1.4L∗.

(4) The galaxy power spectrum has been measured to high accuracy (10–15% rms) over
about a decade in scale atk < 0.15hMpc−1. The results are very well matched by
ann = 1 CDM model withΩmh = 0.18 and 16% baryons.

(5) Combining the power spectrum results with current CMB data, very tight con-
straints are obtained on cosmological parameters. For a scalar-dominated flat model,
we obtainΩm = 0.31±0.05, andh = 0.68±0.04, independent of external data.

(6) Results from the CMB comparison imply a large-scale biasparameter consistent
with unity. This conclusion is also reached in a completely independent way via the
bispectrum analysis of Verde et al. (2002).

Overall, these results provide precise support for a cosmological model that is flat, with
(Ωb,Ωc,Ωv) ' (0.04,0.25,0.71), to a tolerance of 10% in each figure. Although the
ΛCDM model has been claimed to have problems in matching galaxy-scale observa-
tions, it clearly works extremely well on large scales, and any proposed replacement for
CDM will have to maintain this agreement. So far, there has been no need to invoke
either tilt of the scalar spectrum, or a tensor component in the CMB. If this situation
is to change, the most likely route will be via new CMB data, combined with the key
complementary information that the large-scale structurein the 2dFGRS can provide.
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